# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle from ...models.unet_1d import UNet1DModel from ...pipeline_utils import DiffusionPipeline from ...utils.dummy_paddle_objects import DDPMScheduler class ValueGuidedRLPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Pipeline for sampling actions from a diffusion model trained to predict sequences of states. Original implementation inspired by this repository: https://github.com/jannerm/diffuser. Parameters: value_function ([`UNet1DModel`]): A specialized UNet for fine-tuning trajectories base on reward. unet ([`UNet1DModel`]): U-Net architecture to denoise the encoded trajectories. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this application is [`DDPMScheduler`]. env: An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models. """ def __init__( self, value_function: UNet1DModel, unet: UNet1DModel, scheduler: DDPMScheduler, env, ): super().__init__() self.value_function = value_function self.unet = unet self.scheduler = scheduler self.env = env self.data = env.get_dataset() self.means = dict() for key in self.data.keys(): try: self.means[key] = self.data[key].mean() except Exception: pass self.stds = dict() for key in self.data.keys(): try: self.stds[key] = self.data[key].std() except Exception: pass self.state_dim = env.observation_space.shape[0] self.action_dim = env.action_space.shape[0] def normalize(self, x_in, key): return (x_in - self.means[key]) / self.stds[key] def de_normalize(self, x_in, key): return x_in * self.stds[key] + self.means[key] def to_paddle(self, x_in): if type(x_in) is dict: return {k: self.to_paddle(v) for k, v in x_in.items()} elif paddle.is_tensor(x_in): return x_in return paddle.to_tensor(x_in) def reset_x0(self, x_in, cond, act_dim): for key, val in cond.items(): x_in[:, key, act_dim:] = val.clone() return x_in def run_diffusion(self, x, conditions, n_guide_steps, scale): batch_size = x.shape[0] y = None for i in self.progress_bar(self.scheduler.timesteps): # create batch of timesteps to pass into model timesteps = paddle.full((batch_size,), i, dtype="int64") for _ in range(n_guide_steps): with paddle.set_grad_enabled(True): x.stop_gradient = False # permute to match dimension for pre-trained models y = self.value_function(x.transpose([0, 2, 1]), timesteps).sample grad = paddle.autograd.grad([y.sum()], [x])[0] posterior_variance = self.scheduler._get_variance(i) model_std = paddle.exp(0.5 * posterior_variance) grad = model_std * grad grad[timesteps < 2] = 0 x = x.detach() x = x + scale * grad x = self.reset_x0(x, conditions, self.action_dim) prev_x = self.unet(x.transpose([0, 2, 1]), timesteps).sample.transpose([0, 2, 1]) # TODO: verify deprecation of this kwarg x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"] # apply conditions to the trajectory (set the initial state) x = self.reset_x0(x, conditions, self.action_dim) x = self.to_paddle(x) return x, y def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1): # normalize the observations and create batch dimension obs = self.normalize(obs, "observations") obs = obs[None].repeat(batch_size, axis=0) conditions = {0: self.to_paddle(obs)} shape = [batch_size, planning_horizon, self.state_dim + self.action_dim] # generate initial noise and apply our conditions (to make the trajectories start at current state) x1 = paddle.randn(shape) x = self.reset_x0(x1, conditions, self.action_dim) x = self.to_paddle(x) # run the diffusion process x, y = self.run_diffusion(x, conditions, n_guide_steps, scale) # sort output trajectories by value sorted_idx = paddle.argsort(y, 0, descending=True).squeeze() sorted_values = x[sorted_idx] actions = sorted_values[:, :, : self.action_dim] actions = actions.detach().numpy() denorm_actions = self.de_normalize(actions, key="actions") # select the action with the highest value if y is not None: selected_index = 0 else: # if we didn't run value guiding, select a random action selected_index = np.random.randint(0, batch_size) denorm_actions = denorm_actions[selected_index, 0] return denorm_actions