# type: ignore from typing import Any import gradio as gr import spaces import torch from PIL import Image from transformers import AutoModelForCausalLM, LlamaTokenizer DEFAULT_PARAMS = { "do_sample": False, "max_new_tokens": 256, } DEFAULT_QUERY = ( "Provide a factual description of this image in up to two paragraphs. " "Include details on objects, background, scenery, interactions, gestures, poses, and any visible text content. " "Specify the number of repeated objects. " "Describe the dominant colors, color contrasts, textures, and materials. " "Mention the composition, including the arrangement of elements and focus points. " "Note the camera angle or perspective, and provide any identifiable contextual information. " "Include details on the style, lighting, and shadows. " "Avoid subjective interpretations or speculation." ) DTYPE = torch.bfloat16 DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = LlamaTokenizer.from_pretrained( pretrained_model_name_or_path="lmsys/vicuna-7b-v1.5", ) model = AutoModelForCausalLM.from_pretrained( pretrained_model_name_or_path="THUDM/cogvlm-chat-hf", torch_dtype=DTYPE, trust_remote_code=True, low_cpu_mem_usage=True, ) model = model.to(device=DEVICE) @spaces.GPU @torch.no_grad() def generate_caption( image: Image.Image, query: str = DEFAULT_QUERY, params: dict[str, Any] = DEFAULT_PARAMS, ) -> str: inputs = model.build_conversation_input_ids( tokenizer=tokenizer, query=query, history=[], images=[image], ) inputs = { "input_ids": inputs["input_ids"].unsqueeze(0).to(device=DEVICE), "token_type_ids": inputs["token_type_ids"].unsqueeze(0).to(device=DEVICE), "attention_mask": inputs["attention_mask"].unsqueeze(0).to(device=DEVICE), "images": [[inputs["images"][0].to(device=DEVICE, dtype=DTYPE)]], } outputs = model.generate(**inputs, **params) outputs = outputs[:, inputs["input_ids"].shape[1] :] result = tokenizer.decode(outputs[0]) result = result.replace("This image showcases", "").lstrip() return result with gr.Blocks() as demo: with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil") input_query = gr.Textbox(lines=5, label="Prompt", value=DEFAULT_QUERY) run_button = gr.Button(value="Generate Caption") with gr.Column(): output_caption = gr.Textbox(label="Generated Caption", show_copy_button=True) run_button.click( fn=generate_caption, inputs=[input_image, input_query], outputs=output_caption, ) demo.launch(share=False)