import gradio as gr from transformers import pipeline from diffusers import StableDiffusionPipeline import torch import wget # Define the device to use (either "cuda" for GPU or "cpu" for CPU) device = "cuda" if torch.cuda.is_available() else "cpu" # Load the models # Image captioning model to generate captions from uploaded images caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) # Stable Diffusion model for generating new images based on captions sd_pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device) # Load the translation model (English to Arabic) translator = pipeline( task="translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16, device=device ) # Function to generate images based on the image's caption def generate_image_and_translate(image, num_images=1): # Generate caption in English from the uploaded image caption_en = caption_image(image)[0]['generated_text'] # Translate the English caption to Arabic caption_ar = translator(caption_en, src_lang="eng_Latn", tgt_lang="arb_Arab")[0]['translation_text'] generated_images = [] # Generate the specified number of images based on the English caption for _ in range(num_images): generated_image = sd_pipeline(prompt=caption_en).images[0] generated_images.append(generated_image) # Return the generated images along with both captions return generated_images, caption_en, caption_ar # Function to generate images based on the image's caption def generate_image_and_translate(image, num_images=1): # Generate caption in English from the uploaded image caption_en = caption_image(image)[0]['generated_text'] # Translate the English caption to Arabic caption_ar = translator(caption_en, src_lang="eng_Latn", tgt_lang="arb_Arab")[0]['translation_text'] generated_images = [] # Generate the specified number of images based on the English caption for _ in range(num_images): generated_image = sd_pipeline(prompt=caption_en).images[0] generated_images.append(generated_image) # Return the generated images along with both captions return generated_images, caption_en, caption_ar # Set up the Gradio interface interface = gr.Interface( fn=generate_image_and_translate, # Function to call when processing input inputs=[ gr.Image(type="pil", label="📤 Upload Image"), # Input for image upload gr.Slider(minimum=1, maximum=10, label="🔢 Number of Images", value=1, step=1) # Slider to select number of images ], outputs=[ gr.Gallery(label="🖼️ Generated Images"), gr.Textbox(label="📝 Generated Caption (English)", interactive=False), gr.Textbox(label="🌍 Translated Caption (Arabic)", interactive=False) ], title="Image Generation and Captioning", # Title of the interface description="Upload an image to extract a caption and display it in both Arabic and English. Then, a new image will be generated based on that caption.", # Description theme='freddyaboulton/dracula_revamped' # Determine theme ) # Launch the Gradio application interface.launch()