from fastapi import FastAPI, HTTPException from pydantic import BaseModel import pandas as pd import numpy as np import tensorflow as tf from yahoo_fin.stock_info import get_data from sklearn.preprocessing import MinMaxScaler from transformers import AutoTokenizer, AutoModelForSequenceClassification from pytorch_forecasting import TemporalFusionTransformer from bs4 import BeautifulSoup import requests from dotenv import load_dotenv import os from fastapi.middleware.cors import CORSMiddleware os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') MODEL_PATH = "lib/20_lstm_model.h5" model = tf.keras.models.load_model(MODEL_PATH) model_name_news = "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis" tokenizer = AutoTokenizer.from_pretrained(model_name_news) sentiment_model = AutoModelForSequenceClassification.from_pretrained( model_name_news).to(device) best_model_path = 'lib/tft_pred.ckpt' best_tft = TemporalFusionTransformer.load_from_checkpoint(best_model_path).to(device) app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["GET", "POST", "PUT", "DELETE"], allow_headers=["*"], ) class TickerRequest(BaseModel): ticker: str start_date: str end_date: str interval: str = "1d" def fetch_and_process_ticker_data(ticker, start_date, end_date, interval="1d"): df = pd.DataFrame() try: temp = get_data(ticker, start_date=start_date, end_date=end_date, index_as_date=True, interval=interval) temp = temp.drop(columns="close") temp["revenue"] = temp["adjclose"] * temp["volume"] temp["daily_profit"] = temp["adjclose"] - temp["open"] df = pd.concat([df, temp], axis=0) except Exception as error: raise HTTPException( status_code=500, detail=f"Error processing ticker {ticker}: {error}") return df def ticker_encoded(df): label_map = {'ATOM': 0, 'HBIO': 1, 'IBEX': 2, 'MYFW': 3, 'NATH': 4} ticker_encoded = [] for i in df.iloc(): ticker_name = i['ticker'] encoded_ticker = label_map[ticker_name] ticker_encoded.append(encoded_ticker) df['ticker_encoded'] = ticker_encoded return df def normalize(df): price_scaler = MinMaxScaler() volume_revenue_scaler = MinMaxScaler() profit_scaler = MinMaxScaler() df[["open", "high", "low", "adjclose"]] = price_scaler.fit_transform( df[["open", "high", "low", "adjclose"]]) df[["volume", "revenue"]] = volume_revenue_scaler.fit_transform( df[["volume", "revenue"]]) df[["daily_profit"]] = profit_scaler.fit_transform(df[["daily_profit"]]) return df, price_scaler def create_sequence(dataset): sequences = [] labels = [] dates = [] stock = [] df_copy = dataset.drop(columns=["date"]) start_idx = 0 for stop_idx in range(20, len(dataset)): set_ = set(dataset.iloc[start_idx:stop_idx]["ticker_encoded"].values) target_day_ticker_class = dataset.iloc[stop_idx]["ticker_encoded"] if len(set_) == 1 and target_day_ticker_class == list(set_)[0]: sequences.append(df_copy.iloc[start_idx:stop_idx].values) labels.append(df_copy.iloc[stop_idx][["open", "adjclose"]]) date_string = dataset.iloc[stop_idx]["date"].strftime('%Y-%m-%d') dates.append(date_string) stock.append(str(dataset.iloc[stop_idx]["ticker_encoded"])) start_idx += 1 return np.array(sequences), np.array(labels), dates, stock def scaling_predictions(price_scaler, combined_dataset_prediction): price_scaler.min_ = np.array([price_scaler.min_[0], price_scaler.min_[3]]) price_scaler.scale_ = np.array( [price_scaler.scale_[0], price_scaler.scale_[3]]) combined_dataset_prediction_inverse = price_scaler.inverse_transform( combined_dataset_prediction) return combined_dataset_prediction_inverse def storing_predictions(df, dates, stock, combined_dataset_prediction_inverse): df['pred_open'] = np.nan df['pred_closing'] = np.nan for idx, row in df.iterrows(): current_row_date = row.date.strftime('%Y-%m-%d') current_row_ticker = str(row.ticker_encoded) for i in range(len(dates)): if current_row_date == dates[i] and stock[i] == current_row_ticker: opening_price = combined_dataset_prediction_inverse[i][0] closing_price = combined_dataset_prediction_inverse[i][1] df.loc[idx, 'pred_open'] = opening_price df.loc[idx, 'pred_closing'] = closing_price break df = df.dropna(subset=['pred_open', 'pred_closing']).reset_index(drop=True) return df def scrape_news(ticker_name): columns = ['datatime', 'title', 'source', 'link', 'top_sentiment', 'sentiment_score'] df = pd.DataFrame(columns=columns) for i in range(1, 3): url = f'https://markets.businessinsider.com/news/{ticker_name}-stock?p={i}' response = requests.get(url) html = response.text soup = BeautifulSoup(html, 'lxml') articles = soup.find_all('div', class_='latest-news__story') for article in articles: datatime = article.find( 'time', class_='latest-news__date').get('datetime') title = article.find('a', class_='news-link').text source = article.find('span', class_='latest-news__source').text link = article.find('a', class_='news-link').get('href') top_sentiment = '' sentiment_score = 0 temp = pd.DataFrame( [[datatime, title, source, link, top_sentiment, sentiment_score]], columns=df.columns) df = pd.concat([temp, df], axis=0) return df def add_recent_news(main_df, news_df, lookback_days=10): news_df.drop(columns=['top_sentiment', 'sentiment_score'], inplace=True) main_df['date'] = pd.to_datetime(main_df['date']) news_df['datatime'] = pd.to_datetime(news_df['datatime']) news_list = [] last_available_news = '' for _, row in main_df.iterrows(): current_date = row['date'] current_ticker = row['ticker'] news_articles = '' for _, news_row in news_df.iterrows(): extracted_date = news_row['datatime'] if (current_date - extracted_date).days <= lookback_days and extracted_date < current_date: news_articles += news_row['title'] + " " if not news_articles.strip(): for _, news_row in news_df[::-1].iterrows(): if news_row['datatime'] < current_date: news_articles = news_row['title'] break last_available_news = news_articles.strip() or last_available_news news_list.append(last_available_news) main_df['news'] = news_list return main_df def news_sentiment(df): news_column_name = 'news' texts = df[news_column_name].tolist() inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt") inputs = {key: val.to(device) for key, val in inputs.items()} with torch.no_grad(): outputs = sentiment_model(**inputs) logits = outputs.logits probs = torch.softmax(logits, dim=-1) labels = ["negative", "neutral", "positive"] predictions = torch.argmax(probs, dim=-1) df['predicted_sentiment'] = pd.Series( [labels[pred] for pred in predictions], index=df[df[news_column_name].notna()].index) sentiment_map = { 'positive': 1, 'neutral': 0, 'negative': -1 } df['sentiment_score'] = df['predicted_sentiment'].map(sentiment_map) df = df.drop(columns=['news']) return df def get_tft_predictions(df): for i in range(1, 21): df[f'open_lag_{i}'] = df.groupby('ticker')['open'].shift(i) df[f'adjclose_lag_{i}'] = df.groupby('ticker')['adjclose'].shift(i) lag_columns = [f'open_lag_{i}' for i in range( 1, 21)] + [f'adjclose_lag_{i}' for i in range(1, 21)] df.dropna(subset=lag_columns, inplace=True) predictions = best_tft.predict(df.to(device), mode="quantiles") return predictions @app.get("/fetch-ticker-data/{ticker_name}/{start_date}/{end_date}/{interval}") async def fetch_ticker_data(ticker_name: str, start_date: str, end_date: str, interval: str): try: result_df = fetch_and_process_ticker_data( ticker=ticker_name, start_date=start_date, end_date=end_date, interval=interval ) return result_df.to_dict(orient="records") except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/predict-prices/{ticker_name}/{start_date}/{end_date}/{interval}") async def predict_prices(ticker_name: str, start_date: str, end_date: str, interval: str): try: result_df = fetch_and_process_ticker_data( ticker=ticker_name, start_date=start_date, end_date=end_date, interval=interval ) raw_data = result_df.tail(60) raw_data = raw_data.reset_index() raw_data.rename(columns={"index": "date"}, inplace=True) raw_data = ticker_encoded(raw_data) temp_df = raw_data.copy() normalized_data, scaler = normalize(raw_data) normalized_data = normalized_data.drop(columns=['ticker']) sequences, _, dates, stock = create_sequence(normalized_data) combined_dataset_prediction = model.predict(sequences) combined_dataset_prediction_inverse = scaling_predictions( scaler, combined_dataset_prediction) lstm_pred_df = storing_predictions( temp_df, dates, stock, combined_dataset_prediction_inverse) news_df = scrape_news(ticker_name=ticker_name) combined_with_news_df = add_recent_news(lstm_pred_df, news_df) sentiment_df = news_sentiment(combined_with_news_df) sentiment_df['time_idx'] = range(1, len(sentiment_df) + 1) predicted_values = get_tft_predictions(sentiment_df) final_pred_open_price = predicted_values[0].item() final_pred_closing_price = predicted_values[1].item() return {"open": final_pred_open_price, 'close': final_pred_closing_price} except Exception as e: raise HTTPException(status_code=500, detail=str(e))