import torch import pandas as pd from transformers import BartTokenizer, BartForConditionalGeneration import gradio as gr # Initialize models and tokenizers for Healthcare and AI perspectives healthcare_model_name = 'facebook/bart-large-cnn' # Healthcare-focused model ai_model_name = 'facebook/bart-large-xsum' # AI-focused model healthcare_tokenizer = BartTokenizer.from_pretrained(healthcare_model_name) ai_tokenizer = BartTokenizer.from_pretrained(ai_model_name) healthcare_model = BartForConditionalGeneration.from_pretrained(healthcare_model_name) ai_model = BartForConditionalGeneration.from_pretrained(ai_model_name) # Summarization function for both Healthcare and AI agents def generate_summary(text, tokenizer, model): inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True, padding="max_length") with torch.no_grad(): outputs = model.generate(inputs["input_ids"], max_length=150, num_beams=5, no_repeat_ngram_size=2, early_stopping=True) return tokenizer.decode(outputs[0], skip_special_tokens=True) def healthcare_agent(abstract): return generate_summary(abstract, healthcare_tokenizer, healthcare_model) def ai_agent(abstract): return generate_summary(abstract, ai_tokenizer, ai_model) # Interaction function to generate implications based on both agents' insights def generate_implications(healthcare_summary, ai_summary): healthcare_implication = f"Healthcare Implications: {healthcare_summary} The healthcare sector can leverage these findings to improve patient care and treatment outcomes." ai_implication = f"AI Implications: {ai_summary} These insights can further enhance AI models, making them more applicable in real-world healthcare scenarios." # Combine both implications to provide a holistic view combined_implications = f"{healthcare_implication}\n\n{ai_implication}" return combined_implications # Function to process the CSV and generate results def process_and_generate_implications(csv_file): # Read the input CSV file containing titles and abstracts papers_df = pd.read_csv(csv_file.name, encoding='latin-1') # Check if 'title' and 'abstract' columns exist required_columns = ['title', 'abstract'] if not all(col.lower() in papers_df.columns.str.lower() for col in required_columns): return "The CSV must contain 'title' and 'abstract' columns." # Drop rows where title or abstract is missing papers_df = papers_df.dropna(subset=['title', 'abstract']) results = [] # Process each paper (row) in the CSV for _, row in papers_df.iterrows(): title = row['title'] abstract = str(row['abstract']) # Generate summaries using both agents healthcare_summary = healthcare_agent(abstract) ai_summary = ai_agent(abstract) # Generate the implications based on both summaries implications = generate_implications(healthcare_summary, ai_summary) # Store the results results.append({ "Title": title, "Abstract": abstract, "Healthcare Summary": healthcare_summary, "AI Summary": ai_summary, "Implications": implications }) # Convert results into a DataFrame results_df = pd.DataFrame(results) # Return the results as a CSV string for download return results_df.to_csv(index=False) # Define Gradio interface def create_interface(): with gr.Blocks() as demo: gr.Markdown("## Research Paper Summarization and Implications") gr.Markdown("Upload a CSV file with 'title' and 'abstract' columns to generate healthcare and AI implications.") # Upload CSV file csv_input = gr.File(label="Upload CSV File", type="file") # Button to process the CSV and generate results output_csv = gr.File(label="Download Results CSV") # Process CSV and generate implications on button click csv_input.change(process_and_generate_implications, inputs=csv_input, outputs=output_csv) return demo # Launch the interface if __name__ == "__main__": demo = create_interface() demo.launch(debug=True) # Set debug=True to see detailed logs