import spaces import os import imageio import numpy as np import torch import rembg from PIL import Image from torchvision.transforms import v2 from pytorch_lightning import seed_everything from omegaconf import OmegaConf from einops import rearrange, repeat from tqdm import tqdm import threading from queue import SimpleQueue from typing import Any from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler import rerun as rr from gradio_rerun import Rerun import src from src.utils.train_util import instantiate_from_config from src.utils.camera_util import ( FOV_to_intrinsics, get_zero123plus_input_cameras, get_circular_camera_poses, ) from src.utils.mesh_util import save_obj, save_glb from src.utils.infer_util import remove_background, resize_foreground, images_to_video from src.models.lrm_mesh import InstantMesh import tempfile from functools import partial from huggingface_hub import hf_hub_download import gradio as gr def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): """ Get the rendering camera parameters. """ c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) if is_flexicubes: cameras = torch.linalg.inv(c2ws) cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) else: extrinsics = c2ws.flatten(-2) intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) cameras = torch.cat([extrinsics, intrinsics], dim=-1) cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) return cameras def images_to_video(images, output_path, fps=30): # images: (N, C, H, W) os.makedirs(os.path.dirname(output_path), exist_ok=True) frames = [] for i in range(images.shape[0]): frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ f"Frame shape mismatch: {frame.shape} vs {images.shape}" assert frame.min() >= 0 and frame.max() <= 255, \ f"Frame value out of range: {frame.min()} ~ {frame.max()}" frames.append(frame) imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') ############################################################################### # Configuration. ############################################################################### import shutil def find_cuda(): # Check if CUDA_HOME or CUDA_PATH environment variables are set cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') if cuda_home and os.path.exists(cuda_home): return cuda_home # Search for the nvcc executable in the system's PATH nvcc_path = shutil.which('nvcc') if nvcc_path: # Remove the 'bin/nvcc' part to get the CUDA installation path cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) return cuda_path return None cuda_path = find_cuda() if cuda_path: print(f"CUDA installation found at: {cuda_path}") else: print("CUDA installation not found") config_path = 'configs/instant-mesh-large.yaml' config = OmegaConf.load(config_path) config_name = os.path.basename(config_path).replace('.yaml', '') model_config = config.model_config infer_config = config.infer_config IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False device = torch.device('cuda') # load diffusion model print('Loading diffusion model ...') pipeline = DiffusionPipeline.from_pretrained( "sudo-ai/zero123plus-v1.2", custom_pipeline="zero123plus", torch_dtype=torch.float16, ) pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( pipeline.scheduler.config, timestep_spacing='trailing' ) # load custom white-background UNet unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") state_dict = torch.load(unet_ckpt_path, map_location='cpu') pipeline.unet.load_state_dict(state_dict, strict=True) pipeline = pipeline.to(device) print(f'type(pipeline)={type(pipeline)}') # load reconstruction model print('Loading reconstruction model ...') model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model") model: InstantMesh = instantiate_from_config(model_config) state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} model.load_state_dict(state_dict, strict=True) model = model.to(device) print('Loading Finished!') def check_input_image(input_image): if input_image is None: raise gr.Error("No image uploaded!") def preprocess(input_image, do_remove_background): rembg_session = rembg.new_session() if do_remove_background else None if do_remove_background: input_image = remove_background(input_image, rembg_session) input_image = resize_foreground(input_image, 0.85) return input_image def pipeline_callback(output_queue: SimpleQueue, pipe: Any, step_index: int, timestep: float, callback_kwargs: dict[str, Any]) -> dict[str, Any]: rr.set_time_sequence("iteration", step_index) rr.set_time_seconds("timestep", timestep) latents = callback_kwargs["latents"] image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # type: ignore[attr-defined] image = pipe.image_processor.postprocess(image, output_type="np").squeeze() # type: ignore[attr-defined] # output_queue.put(("log", "mvs/image", rr.Image(image))) # output_queue.put(("log", "mvs/latents", rr.Tensor(latents.squeeze()))) return callback_kwargs @spaces.GPU def generate_mvs(output_queue: SimpleQueue, input_image, sample_steps, sample_seed): seed_everything(sample_seed) z123_image = pipeline( input_image, num_inference_steps=sample_steps, callback_on_step_end=lambda *args, **kwargs: pipeline_callback(output_queue, *args, **kwargs), ).images[0] output_queue.put(("z123_image", z123_image)) # sampling # z123_image = pipeline( # input_image, # num_inference_steps=sample_steps # ).images[0] # show_image = np.asarray(z123_image, dtype=np.uint8) # show_image = torch.from_numpy(show_image) # (960, 640, 3) # show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) # show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) # show_image = Image.fromarray(show_image.numpy()) # return z123_image, show_image @spaces.GPU def make3d(output_queue: SimpleQueue, images: Image.Image): print(f'type(images)={type(images)}') global model if IS_FLEXICUBES: model.init_flexicubes_geometry(device, use_renderer=False) model = model.eval() images = np.asarray(images, dtype=np.float32) / 255.0 images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) print(f'type(input_cameras)={type(input_cameras)}') images = images.unsqueeze(0).to(device) images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) print(f'type(images)={type(images)}') mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name print(mesh_fpath) mesh_basename = os.path.basename(mesh_fpath).split('.')[0] mesh_dirname = os.path.dirname(mesh_fpath) video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") with torch.no_grad(): # get triplane planes = model.forward_planes(images, input_cameras) print(f'type(planes)={type(planes)}') # # get video chunk_size = 20 if IS_FLEXICUBES else 1 render_size = 384 # frames = [] for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): if IS_FLEXICUBES: frame = model.forward_geometry( planes, render_cameras[:, i:i+chunk_size], render_size=render_size, )['img'] else: frame = model.synthesizer( planes, cameras=render_cameras[:, i:i+chunk_size], render_size=render_size, )['images_rgb'] print(f'type(frame)={type(frame)}') output_queue.put(("log", "3dvideo", rr.Image(frame))) # frames.append(frame) # frames = torch.cat(frames, dim=1) # images_to_video( # frames[0], # video_fpath, # fps=30, # ) # print(f"Video saved to {video_fpath}") # get mesh mesh_out = model.extract_mesh( planes, use_texture_map=False, **infer_config, ) print(f'type(mesh_out)={type(mesh_out)}') vertices, faces, vertex_colors = mesh_out vertices = vertices[:, [1, 2, 0]] print(f'type(vertices)={type(vertices)}') print(f'type(faces)={type(faces)}') print(f'type(vertex_colors)={type(vertex_colors)}') save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) save_obj(vertices, faces, vertex_colors, mesh_fpath) print(f"Mesh saved to {mesh_fpath}") return mesh_out @rr.thread_local_stream("InstantMesh") def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed): preprocessed_image = preprocess(input_image, do_remove_background) stream = rr.binary_stream() rr.log("preprocessed_image", rr.Image(preprocessed_image)) yield stream.read() output_queue = SimpleQueue() # mvs_thread = threading.Thread(target=generate_mvs, args=[output_queue, input_image, sample_steps, sample_seed]) # mvs_thread.start() # while True: # msg = output_queue.get() # if msg[0] == "z123_image": # z123_image = msg[1] # break # elif msg[0] == "log": # entity_path = msg[1] # entity = msg[2] # rr.log(entity_path, entity) # yield stream.read() # mvs_thread.join() # rr.log("z123image", rr.Image(z123_image)) # yield stream.read() # mesh_fpath, mesh_glb_fpath = make3d(output_queue, z123_image) # while not output_queue.empty(): # msg = output_queue.get() # if msg[0] == "log": # entity_path = msg[1] # entity = msg[2] # rr.log(entity_path, entity) # yield stream.read() _HEADER_ = '''

Official 🤗 Gradio Demo

InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models

**InstantMesh** is a feed-forward framework for efficient 3D mesh generation from a single image based on the LRM/Instant3D architecture. Code: GitHub. Techenical report: ArXiv. ❗️❗️❗️**Important Notes:** - Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our Github Repo. - The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42). ''' _CITE_ = r""" If InstantMesh is helpful, please help to ⭐ the Github Repo. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/InstantMesh?style=social)](https://github.com/TencentARC/InstantMesh) --- 📝 **Citation** If you find our work useful for your research or applications, please cite using this bibtex: ```bibtex @article{xu2024instantmesh, title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models}, author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying}, journal={arXiv preprint arXiv:2404.07191}, year={2024} } ``` 📋 **License** Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details. 📧 **Contact** If you have any questions, feel free to open a discussion or contact us at bluestyle928@gmail.com. """ with gr.Blocks() as demo: gr.Markdown(_HEADER_) with gr.Row(variant="panel"): with gr.Column(): with gr.Row(): input_image = gr.Image( label="Input Image", image_mode="RGBA", sources="upload", #width=256, #height=256, type="pil", elem_id="content_image", ) with gr.Row(): with gr.Group(): do_remove_background = gr.Checkbox( label="Remove Background", value=True ) sample_seed = gr.Number(value=42, label="Seed Value", precision=0) sample_steps = gr.Slider( label="Sample Steps", minimum=30, maximum=75, value=75, step=5 ) with gr.Row(): submit = gr.Button("Generate", elem_id="generate", variant="primary") with gr.Row(variant="panel"): gr.Examples( examples=[ os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) ], inputs=[input_image], label="Examples", cache_examples=False, examples_per_page=16 ) with gr.Column(): viewer = Rerun(streaming=True, height=800) # with gr.Row(): # with gr.Column(): # mv_show_images = gr.Image( # label="Generated Multi-views", # type="pil", # width=379, # interactive=False # ) # with gr.Row(): # with gr.Tab("OBJ"): # output_model_obj = gr.Model3D( # label="Output Model (OBJ Format)", # interactive=False, # ) # gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.") # with gr.Tab("GLB"): # output_model_glb = gr.Model3D( # label="Output Model (GLB Format)", # interactive=False, # ) # gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.") with gr.Row(): gr.Markdown('''Try a different seed value if the result is unsatisfying (Default: 42).''') gr.Markdown(_CITE_) mv_images = gr.State() submit.click(fn=check_input_image, inputs=[input_image]).success( fn=log_to_rr, inputs=[input_image, do_remove_background, sample_steps, sample_seed], outputs=[viewer] ) # submit.click(fn=check_input_image, inputs=[input_image]).success( # fn=preprocess, # inputs=[input_image, do_remove_background], # outputs=[processed_image], # ).success( # fn=generate_mvs, # inputs=[processed_image, sample_steps, sample_seed], # outputs=[mv_images, mv_show_images] # ).success( # fn=make3d, # inputs=[mv_images], # outputs=[output_model_obj, output_model_glb] # ) demo.launch()