import abc import torch import numpy as np from sgmse.util.registry import Registry PredictorRegistry = Registry("Predictor") class Predictor(abc.ABC): """The abstract class for a predictor algorithm.""" def __init__(self, sde, score_fn, probability_flow=False): super().__init__() self.sde = sde self.rsde = sde.reverse(score_fn) self.score_fn = score_fn self.probability_flow = probability_flow @abc.abstractmethod def update_fn(self, x, t, *args): """One update of the predictor. Args: x: A PyTorch tensor representing the current state t: A Pytorch tensor representing the current time step. *args: Possibly additional arguments, in particular `y` for OU processes Returns: x: A PyTorch tensor of the next state. x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising. """ pass def debug_update_fn(self, x, t, *args): raise NotImplementedError(f"Debug update function not implemented for predictor {self}.") @PredictorRegistry.register('euler_maruyama') class EulerMaruyamaPredictor(Predictor): def __init__(self, sde, score_fn, probability_flow=False): super().__init__(sde, score_fn, probability_flow=probability_flow) def update_fn(self, x, t, *args): dt = -1. / self.rsde.N z = torch.randn_like(x) f, g = self.rsde.sde(x, t, *args) x_mean = x + f * dt x = x_mean + g[:, None, None, None] * np.sqrt(-dt) * z return x, x_mean @PredictorRegistry.register('reverse_diffusion') class ReverseDiffusionPredictor(Predictor): def __init__(self, sde, score_fn, probability_flow=False): super().__init__(sde, score_fn, probability_flow=probability_flow) def update_fn(self, x, t, y, stepsize): f, g = self.rsde.discretize(x, t, y, stepsize) z = torch.randn_like(x) x_mean = x - f x = x_mean + g[:, None, None, None] * z return x, x_mean @PredictorRegistry.register('none') class NonePredictor(Predictor): """An empty predictor that does nothing.""" def __init__(self, *args, **kwargs): pass def update_fn(self, x, t, *args): return x, x