import abc import torch from sgmse import sdes from sgmse.util.registry import Registry CorrectorRegistry = Registry("Corrector") class Corrector(abc.ABC): """The abstract class for a corrector algorithm.""" def __init__(self, sde, score_fn, snr, n_steps): super().__init__() self.rsde = sde.reverse(score_fn) self.score_fn = score_fn self.snr = snr self.n_steps = n_steps @abc.abstractmethod def update_fn(self, x, t, *args): """One update of the corrector. Args: x: A PyTorch tensor representing the current state t: A PyTorch tensor representing the current time step. *args: Possibly additional arguments, in particular `y` for OU processes Returns: x: A PyTorch tensor of the next state. x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising. """ pass @CorrectorRegistry.register(name='langevin') class LangevinCorrector(Corrector): def __init__(self, sde, score_fn, snr, n_steps): super().__init__(sde, score_fn, snr, n_steps) self.score_fn = score_fn self.n_steps = n_steps self.snr = snr def update_fn(self, x, t, *args): target_snr = self.snr for _ in range(self.n_steps): grad = self.score_fn(x, t, *args) noise = torch.randn_like(x) grad_norm = torch.norm(grad.reshape(grad.shape[0], -1), dim=-1).mean() noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() step_size = ((target_snr * noise_norm / grad_norm) ** 2 * 2).unsqueeze(0) x_mean = x + step_size[:, None, None, None] * grad x = x_mean + noise * torch.sqrt(step_size * 2)[:, None, None, None] return x, x_mean @CorrectorRegistry.register(name='ald') class AnnealedLangevinDynamics(Corrector): """The original annealed Langevin dynamics predictor in NCSN/NCSNv2.""" def __init__(self, sde, score_fn, snr, n_steps): super().__init__(sde, score_fn, snr, n_steps) if not isinstance(sde, (sdes.OUVESDE,)): raise NotImplementedError(f"SDE class {sde.__class__.__name__} not yet supported.") self.sde = sde self.score_fn = score_fn self.snr = snr self.n_steps = n_steps def update_fn(self, x, t, *args): n_steps = self.n_steps target_snr = self.snr std = self.sde.marginal_prob(x, t, *args)[1] for _ in range(n_steps): grad = self.score_fn(x, t, *args) noise = torch.randn_like(x) step_size = (target_snr * std) ** 2 * 2 x_mean = x + step_size[:, None, None, None] * grad x = x_mean + noise * torch.sqrt(step_size * 2)[:, None, None, None] return x, x_mean @CorrectorRegistry.register(name='none') class NoneCorrector(Corrector): """An empty corrector that does nothing.""" def __init__(self, *args, **kwargs): self.snr = 0 self.n_steps = 0 pass def update_fn(self, x, t, *args): return x, x