--- base_model: Locutusque/llama-3-neural-chat-v2.2-8B inference: false license: apache-2.0 language: - en pipeline_tag: text-generation tags: - 4-bit - AWQ - text-generation - autotrain_compatible - endpoints_compatible library_name: transformers quantized_by: Suparious --- # Locutusque/llama-3-neural-chat-v2.2-8B AWQ - Model creator: [Locutusque](https://huggingface.co/Locutusque) - Original model: [llama-3-neural-chat-v2.2-8B](https://huggingface.co/Locutusque/llama-3-neural-chat-v2.2-8B) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/6XQuhjWNr6C4RbU9f1k99.png) ## Model Details I fine-tuned llama-3 8B on an approach similar to Intel's neural chat language model. I have slightly modified the data sources so it is stronger in coding, math, and writing. I use both SFT and DPO-Positive. DPO-Positive dramatically improves performance over DPO. - **Developed by:** Locutusque - **Model type:** Built with Meta Llama 3 - **Language(s) (NLP):** Many? - **License:** Llama 3 license https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code