--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: Phi-3.5-MultiCap-mt results: [] --- # Phi-3.5-MultiCap-mt This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4288 | 0.1533 | 15 | 1.3449 | | 1.0894 | 0.3065 | 30 | 1.1240 | | 0.9541 | 0.4598 | 45 | 0.9830 | | 0.9216 | 0.6130 | 60 | 0.8949 | | 0.8675 | 0.7663 | 75 | 0.8414 | | 0.8007 | 0.9195 | 90 | 0.8108 | | 0.8205 | 1.0728 | 105 | 0.7919 | | 0.7864 | 1.2261 | 120 | 0.7794 | | 0.7983 | 1.3793 | 135 | 0.7705 | | 0.7784 | 1.5326 | 150 | 0.7641 | | 0.744 | 1.6858 | 165 | 0.7595 | | 0.7765 | 1.8391 | 180 | 0.7569 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1