{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f80c4e0ccc0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWV6QAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZRLQGGMAnZmlF2US0BhdYwNYWN0aXZhdGlvbl9mbpSMG3RvcmNoLm5uLm1vZHVsZXMuYWN0aXZhdGlvbpSMBFRhbmiUk5SMCm9ydGhvX2luaXSUiIwPb3B0aW1pemVyX2NsYXNzlIwTdG9yY2gub3B0aW0ucm1zcHJvcJSMB1JNU3Byb3CUk5SMEG9wdGltaXplcl9rd2FyZ3OUfZQojAVhbHBoYZRHP++uFHrhR66MA2Vwc5RHPuT4tYjjaPGMDHdlaWdodF9kZWNheZRLAHV1Lg==", "net_arch": {"pi": [64], "vf": [64]}, "activation_fn": "", "ortho_init": true, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 350080, "_total_timesteps": 350000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685856628492246500, "learning_rate": 0.0031165015959457986, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VzZXIvLnZpcnR1YWxlbnZzL2RhdGFzY2llbmNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91c2VyLy52aXJ0dWFsZW52cy9kYXRhc2NpZW5jZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9ph8cN1zIchZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApSaNv9UjtL+FT4c+877RPvIGVb9W+qg/lW0zvvsRCD7lQq+/pRYoP83N17//hCU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUOuQv0vmtL/xHHs+jTsfP2XZVb/Lyac/XnxkvgL9IT5kpLm/vOtpPwvBz7/s5iQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAClJo2/1SO0v4VPhz7j1QQ+lyNpPrtkf73zvtE+8gZVv1b6qD+yUUQ9F7TzPQKqMj2VbTO++xEIPuVCr78XIQw9OQTwvsjBzDulFig/zc3Xv/+EJT9wBUa+YEwKvzxYfT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.1027418 -1.4073435 0.26427856]\n [ 0.40965995 -0.8321372 1.3201396 ]\n [-0.17522271 0.13288109 -1.369229 ]\n [ 0.6565955 -1.685968 0.6465606 ]]", "desired_goal": "[[-1.1321812 -1.413278 0.24522759]\n [ 0.6220024 -0.8353484 1.3108457 ]\n [-0.22313067 0.15819171 -1.4503293 ]\n [ 0.9137533 -1.6230787 0.6441486 ]]", "observation": "[[-1.1027418 -1.4073435 0.26427856 0.12972216 0.22767483 -0.06235192]\n [ 0.40965995 -0.8321372 1.3201396 0.04792947 0.11899584 0.04361916]\n [-0.17522271 0.13288109 -1.369229 0.03421124 -0.46878222 0.00624869]\n [ 0.6565955 -1.685968 0.6465606 -0.19338012 -0.5402279 0.06185172]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuqATvldzJzzFOt89LpR8PUGDHL2abYQ+BWEQPid65L2cLsk9KXY8PdRWHz0sl+s9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14416781 0.01022037 0.10899881]\n [ 0.06166475 -0.03821111 0.2586487 ]\n [ 0.1409951 -0.11156111 0.09823343]\n [ 0.04601112 0.03890117 0.11503443]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00022857142857146684, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4STNH9Na6b+UhpRSlIwBbJRLMowBdJRHQIvzB28qWkd1fZQoaAZoCWgPQwhDWfj6Wpfyv5SGlFKUaBVLMmgWR0CL8f0jC53DdX2UKGgGaAloD0MI6GhVSzrK3r+UhpRSlGgVSzJoFkdAi/ET2FnIyXV9lChoBmgJaA9DCMXIkjmW9+y/lIaUUpRoFUsyaBZHQIvwQrFwT/R1fZQoaAZoCWgPQwjXaDnQQ23rv5SGlFKUaBVLMmgWR0CL92dFOO81dX2UKGgGaAloD0MI/RUyVwbV8b+UhpRSlGgVSzJoFkdAi/ZcPe54GHV9lChoBmgJaA9DCN2x2CYVDe6/lIaUUpRoFUsyaBZHQIv1cox59mZ1fZQoaAZoCWgPQwgHP3EA/f7wv5SGlFKUaBVLMmgWR0CL9KFLWZqmdX2UKGgGaAloD0MIVIuIYvIG7r+UhpRSlGgVSzJoFkdAi/uTDn/1hHV9lChoBmgJaA9DCKlOB7Ke2um/lIaUUpRoFUsyaBZHQIv6iBy0a611fZQoaAZoCWgPQwioctpTcs7ov5SGlFKUaBVLMmgWR0CL+Z57gKnfdX2UKGgGaAloD0MIryMO2UC69b+UhpRSlGgVSzJoFkdAi/jMpw0fo3V9lChoBmgJaA9DCH15AfbR6fK/lIaUUpRoFUsyaBZHQIwAAEW69TR1fZQoaAZoCWgPQwgQBTOmYA3mv5SGlFKUaBVLMmgWR0CL/vS+g13udX2UKGgGaAloD0MITWn9LQE48b+UhpRSlGgVSzJoFkdAi/4LVe8f3nV9lChoBmgJaA9DCMIVUKinj+m/lIaUUpRoFUsyaBZHQIv9OiDdxhl1fZQoaAZoCWgPQwihE0IHXcLwv5SGlFKUaBVLMmgWR0CMBEAqd6LPdX2UKGgGaAloD0MIrfcb7bjh5b+UhpRSlGgVSzJoFkdAjAM1G0/nn3V9lChoBmgJaA9DCJiG4SNiSvG/lIaUUpRoFUsyaBZHQIwCS4nWrfd1fZQoaAZoCWgPQwiZgcr495nqv5SGlFKUaBVLMmgWR0CMAXrpqynldX2UKGgGaAloD0MIgLqBAu9k7L+UhpRSlGgVSzJoFkdAjAiBH9WIXXV9lChoBmgJaA9DCD7KiAtAY/C/lIaUUpRoFUsyaBZHQIwHdipeeFt1fZQoaAZoCWgPQwh+G2K85lXgv5SGlFKUaBVLMmgWR0CMBoxfv4M4dX2UKGgGaAloD0MIhnZOs0A76r+UhpRSlGgVSzJoFkdAjAW7TlT3qXV9lChoBmgJaA9DCIcx6e+lcOu/lIaUUpRoFUsyaBZHQIwMpqIrOJN1fZQoaAZoCWgPQwg1zxH5LiXlv5SGlFKUaBVLMmgWR0CMC5003wTedX2UKGgGaAloD0MIDf5+MVvy/7+UhpRSlGgVSzJoFkdAjAq0ONHYpXV9lChoBmgJaA9DCM9nQL0ZNfa/lIaUUpRoFUsyaBZHQIwJ43irDIl1fZQoaAZoCWgPQwghyaze4Tbxv5SGlFKUaBVLMmgWR0CMEN69kBjndX2UKGgGaAloD0MIYvcdw2O/4r+UhpRSlGgVSzJoFkdAjA/TdcjZ+XV9lChoBmgJaA9DCE3Ar5EkiPW/lIaUUpRoFUsyaBZHQIwO6iudPLx1fZQoaAZoCWgPQwjrjVph+l7pv5SGlFKUaBVLMmgWR0CMDhl8PWhAdX2UKGgGaAloD0MIylNW0/XE67+UhpRSlGgVSzJoFkdAjBVt4zJp4HV9lChoBmgJaA9DCOULWkjAqPK/lIaUUpRoFUsyaBZHQIwUZS75Ec91fZQoaAZoCWgPQwiuvOR/8jcAwJSGlFKUaBVLMmgWR0CME3ulXRw7dX2UKGgGaAloD0MI04iZfR4j7b+UhpRSlGgVSzJoFkdAjBKqsEJSi3V9lChoBmgJaA9DCAKaCBueXuS/lIaUUpRoFUsyaBZHQIwZkQGwA2h1fZQoaAZoCWgPQwjKGYo73mTqv5SGlFKUaBVLMmgWR0CMGIY3Ns3ydX2UKGgGaAloD0MIADyiQnXz5L+UhpRSlGgVSzJoFkdAjBeb8vVVgnV9lChoBmgJaA9DCDgVqTC2UPG/lIaUUpRoFUsyaBZHQIwWyu+yquN1fZQoaAZoCWgPQwi6vaQxWkfnv5SGlFKUaBVLMmgWR0CMHjdl/YrbdX2UKGgGaAloD0MIby2T4Xj+97+UhpRSlGgVSzJoFkdAjB0uvECNj3V9lChoBmgJaA9DCNxHbk267fS/lIaUUpRoFUsyaBZHQIwcRQzk6tF1fZQoaAZoCWgPQwiVSQ1tADbrv5SGlFKUaBVLMmgWR0CMG3OzIFNddX2UKGgGaAloD0MIi/87okI18L+UhpRSlGgVSzJoFkdAjCJtPHktE3V9lChoBmgJaA9DCI9yMJsAQ+K/lIaUUpRoFUsyaBZHQIwhYkX1rZd1fZQoaAZoCWgPQwjRPIBFfv3hv5SGlFKUaBVLMmgWR0CMIHi97F85dX2UKGgGaAloD0MImE7rNqh97b+UhpRSlGgVSzJoFkdAjB+mt6ol2XV9lChoBmgJaA9DCDHNdK+Teu+/lIaUUpRoFUsyaBZHQIwmmK0lZ5l1fZQoaAZoCWgPQwg1mfG20mvpv5SGlFKUaBVLMmgWR0CMJY2a2F37dX2UKGgGaAloD0MIJQUWwJQB5L+UhpRSlGgVSzJoFkdAjCSjrJKaonV9lChoBmgJaA9DCH7gKk8g7Oi/lIaUUpRoFUsyaBZHQIwj0oH9m6J1fZQoaAZoCWgPQwjSUQ5mE2Dxv5SGlFKUaBVLMmgWR0CMKr8fms/6dX2UKGgGaAloD0MI16TbErng6b+UhpRSlGgVSzJoFkdAjCm0PQOWjXV9lChoBmgJaA9DCE/JObGH9u2/lIaUUpRoFUsyaBZHQIwoyn752yN1fZQoaAZoCWgPQwip+L8jKtThv5SGlFKUaBVLMmgWR0CMJ/lgc94edX2UKGgGaAloD0MIhzJUxVS68L+UhpRSlGgVSzJoFkdAjC87Ou7pV3V9lChoBmgJaA9DCJaVJqWg2+m/lIaUUpRoFUsyaBZHQIwuL/sE7nx1fZQoaAZoCWgPQwj27/rMWZ/jv5SGlFKUaBVLMmgWR0CMLUXuVopQdX2UKGgGaAloD0MIIoleRrEc9L+UhpRSlGgVSzJoFkdAjCx3N9ph4XV9lChoBmgJaA9DCLclcsEZPPe/lIaUUpRoFUsyaBZHQIwzcCA+Y+l1fZQoaAZoCWgPQwhZEwt8Rbfiv5SGlFKUaBVLMmgWR0CMMmWLP2PDdX2UKGgGaAloD0MI0qdV9Idm5r+UhpRSlGgVSzJoFkdAjDF8EV32VXV9lChoBmgJaA9DCPZGrTB9r/G/lIaUUpRoFUsyaBZHQIwwqw2VE/l1fZQoaAZoCWgPQwg+Qs2QKorpv5SGlFKUaBVLMmgWR0CMN2+yJKradX2UKGgGaAloD0MIexFtx9Rd5L+UhpRSlGgVSzJoFkdAjDZkjopx3nV9lChoBmgJaA9DCJ5DGapiKve/lIaUUpRoFUsyaBZHQIw1exfOUt91fZQoaAZoCWgPQwiwOJz51Rzpv5SGlFKUaBVLMmgWR0CMNKohpxm1dX2UKGgGaAloD0MIgLbVrDO+5b+UhpRSlGgVSzJoFkdAjDvg2hqTKXV9lChoBmgJaA9DCIBIv30duO2/lIaUUpRoFUsyaBZHQIw61YU34sV1fZQoaAZoCWgPQwihE0IHXYLxv5SGlFKUaBVLMmgWR0CMOexHoX9BdX2UKGgGaAloD0MILEme6/vw8b+UhpRSlGgVSzJoFkdAjDkaxgRbr3V9lChoBmgJaA9DCBaFXRQ98Oe/lIaUUpRoFUsyaBZHQIw/+zY287J1fZQoaAZoCWgPQwgKuVLPglDhv5SGlFKUaBVLMmgWR0CMPu+lCTlldX2UKGgGaAloD0MI2UKQgxJm3r+UhpRSlGgVSzJoFkdAjD4FlCkXUHV9lChoBmgJaA9DCMcvvJLkefK/lIaUUpRoFUsyaBZHQIw9NA3T/hl1fZQoaAZoCWgPQwgQW3o01ZPpv5SGlFKUaBVLMmgWR0CMRCwfyPMjdX2UKGgGaAloD0MI1sQCX9Gt6b+UhpRSlGgVSzJoFkdAjEMiDdxhlXV9lChoBmgJaA9DCPhVuVD5196/lIaUUpRoFUsyaBZHQIxCOLYPGyZ1fZQoaAZoCWgPQwih2Aqallj1v5SGlFKUaBVLMmgWR0CMQWep4rz5dX2UKGgGaAloD0MIol2FlJ/U6r+UhpRSlGgVSzJoFkdAjEhkDhcZ+HV9lChoBmgJaA9DCLe0GhL32Oa/lIaUUpRoFUsyaBZHQIxHWT5ftyB1fZQoaAZoCWgPQwiqnPaUnBPxv5SGlFKUaBVLMmgWR0CMRm/W1+iKdX2UKGgGaAloD0MImkF8YMd/47+UhpRSlGgVSzJoFkdAjEWhltj0+XV9lChoBmgJaA9DCNdR1QRR9++/lIaUUpRoFUsyaBZHQIxMytNi6QN1fZQoaAZoCWgPQwi+TurL0s7gv5SGlFKUaBVLMmgWR0CMS8C+UQkHdX2UKGgGaAloD0MIey3ovTHE9r+UhpRSlGgVSzJoFkdAjErXGff4y3V9lChoBmgJaA9DCHLBGfz94uS/lIaUUpRoFUsyaBZHQIxKBh+fAbh1fZQoaAZoCWgPQwjhC5OpglHvv5SGlFKUaBVLMmgWR0CMUR1e0G/vdX2UKGgGaAloD0MId4NorWjz4r+UhpRSlGgVSzJoFkdAjFASwwCbMHV9lChoBmgJaA9DCLdCWI0lrOO/lIaUUpRoFUsyaBZHQIxPKN0eU6h1fZQoaAZoCWgPQwjNdoU+WMbbv5SGlFKUaBVLMmgWR0CMTlgAp8WsdX2UKGgGaAloD0MIkC42rRTC9b+UhpRSlGgVSzJoFkdAjFWvhZQpF3V9lChoBmgJaA9DCN8yp8ti4uy/lIaUUpRoFUsyaBZHQIxUpWkrPMV1fZQoaAZoCWgPQwjwaU5eZALyv5SGlFKUaBVLMmgWR0CMU7vkzXSSdX2UKGgGaAloD0MIiUD1DyKZ7r+UhpRSlGgVSzJoFkdAjFLs54nndXV9lChoBmgJaA9DCF9DcFzGTfC/lIaUUpRoFUsyaBZHQIxZ70Fr2xp1fZQoaAZoCWgPQwj3ViQmqGHyv5SGlFKUaBVLMmgWR0CMWOUh3aBadX2UKGgGaAloD0MIfxXgu82b7L+UhpRSlGgVSzJoFkdAjFf7g0j1PHV9lChoBmgJaA9DCMR8eQH2UfG/lIaUUpRoFUsyaBZHQIxXKk43m3h1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2735, "n_steps": 32, "gamma": 0.9611235834791143, "gae_lambda": 0.8890876649452598, "ent_coef": 2.0106453991847865e-06, "vf_coef": 0.5, "max_grad_norm": 0.6085320475564329, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.9.5", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}