--- language: - en tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:557850 - loss:MultipleNegativesRankingLoss base_model: google-t5/t5-base widget: - source_sentence: A man is jumping unto his filthy bed. sentences: - A young male is looking at a newspaper while 2 females walks past him. - The bed is dirty. - The man is on the moon. - source_sentence: A carefully balanced male stands on one foot near a clean ocean beach area. sentences: - A man is ouside near the beach. - Three policemen patrol the streets on bikes - A man is sitting on his couch. - source_sentence: The man is wearing a blue shirt. sentences: - Near the trashcan the man stood and smoked - A man in a blue shirt leans on a wall beside a road with a blue van and red car with water in the background. - A man in a black shirt is playing a guitar. - source_sentence: The girls are outdoors. sentences: - Two girls riding on an amusement part ride. - a guy laughs while doing laundry - Three girls are standing together in a room, one is listening, one is writing on a wall and the third is talking to them. - source_sentence: A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling. sentences: - A worker is looking out of a manhole. - A man is giving a presentation. - The workers are both inside the manhole. datasets: - sentence-transformers/all-nli pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on google-t5/t5-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.', 'A worker is looking out of a manhole.', 'The workers are both inside the manhole.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### all-nli * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 557,850 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | A person is outdoors, on a horse. | A person is at a diner, ordering an omelette. | | Children smiling and waving at camera | There are children present | The kids are frowning | | A boy is jumping on skateboard in the middle of a red bridge. | The boy does a skateboarding trick. | The boy skates down the sidewalk. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### all-nli * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 6,584 evaluation samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------| | Two women are embracing while holding to go packages. | Two woman are holding packages. | The men are fighting outside a deli. | | Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | Two kids in numbered jerseys wash their hands. | Two kids in jackets walk to school. | | A man selling donuts to a customer during a world exhibition event held in the city of Angeles | A man selling donuts to a customer. | A woman drinks her coffee in a small cafe. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 1e-05 - `warmup_ratio`: 0.1 - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0011 | 10 | - | 1.8733 | | 0.0023 | 20 | - | 1.8726 | | 0.0034 | 30 | - | 1.8714 | | 0.0046 | 40 | - | 1.8697 | | 0.0057 | 50 | - | 1.8675 | | 0.0069 | 60 | - | 1.8649 | | 0.0080 | 70 | - | 1.8619 | | 0.0092 | 80 | - | 1.8584 | | 0.0103 | 90 | - | 1.8544 | | 0.0115 | 100 | 3.1046 | 1.8499 | | 0.0126 | 110 | - | 1.8451 | | 0.0138 | 120 | - | 1.8399 | | 0.0149 | 130 | - | 1.8343 | | 0.0161 | 140 | - | 1.8283 | | 0.0172 | 150 | - | 1.8223 | | 0.0184 | 160 | - | 1.8159 | | 0.0195 | 170 | - | 1.8091 | | 0.0206 | 180 | - | 1.8016 | | 0.0218 | 190 | - | 1.7938 | | 0.0229 | 200 | 3.0303 | 1.7858 | | 0.0241 | 210 | - | 1.7775 | | 0.0252 | 220 | - | 1.7693 | | 0.0264 | 230 | - | 1.7605 | | 0.0275 | 240 | - | 1.7514 | | 0.0287 | 250 | - | 1.7417 | | 0.0298 | 260 | - | 1.7320 | | 0.0310 | 270 | - | 1.7227 | | 0.0321 | 280 | - | 1.7134 | | 0.0333 | 290 | - | 1.7040 | | 0.0344 | 300 | 2.9459 | 1.6941 | | 0.0356 | 310 | - | 1.6833 | | 0.0367 | 320 | - | 1.6725 | | 0.0379 | 330 | - | 1.6614 | | 0.0390 | 340 | - | 1.6510 | | 0.0402 | 350 | - | 1.6402 | | 0.0413 | 360 | - | 1.6296 | | 0.0424 | 370 | - | 1.6187 | | 0.0436 | 380 | - | 1.6073 | | 0.0447 | 390 | - | 1.5962 | | 0.0459 | 400 | 2.7813 | 1.5848 | | 0.0470 | 410 | - | 1.5735 | | 0.0482 | 420 | - | 1.5620 | | 0.0493 | 430 | - | 1.5495 | | 0.0505 | 440 | - | 1.5375 | | 0.0516 | 450 | - | 1.5256 | | 0.0528 | 460 | - | 1.5133 | | 0.0539 | 470 | - | 1.5012 | | 0.0551 | 480 | - | 1.4892 | | 0.0562 | 490 | - | 1.4769 | | 0.0574 | 500 | 2.6308 | 1.4640 | | 0.0585 | 510 | - | 1.4513 | | 0.0597 | 520 | - | 1.4391 | | 0.0608 | 530 | - | 1.4262 | | 0.0619 | 540 | - | 1.4130 | | 0.0631 | 550 | - | 1.3998 | | 0.0642 | 560 | - | 1.3874 | | 0.0654 | 570 | - | 1.3752 | | 0.0665 | 580 | - | 1.3620 | | 0.0677 | 590 | - | 1.3485 | | 0.0688 | 600 | 2.4452 | 1.3350 | | 0.0700 | 610 | - | 1.3213 | | 0.0711 | 620 | - | 1.3088 | | 0.0723 | 630 | - | 1.2965 | | 0.0734 | 640 | - | 1.2839 | | 0.0746 | 650 | - | 1.2713 | | 0.0757 | 660 | - | 1.2592 | | 0.0769 | 670 | - | 1.2466 | | 0.0780 | 680 | - | 1.2332 | | 0.0792 | 690 | - | 1.2203 | | 0.0803 | 700 | 2.2626 | 1.2077 | | 0.0815 | 710 | - | 1.1959 | | 0.0826 | 720 | - | 1.1841 | | 0.0837 | 730 | - | 1.1725 | | 0.0849 | 740 | - | 1.1619 | | 0.0860 | 750 | - | 1.1516 | | 0.0872 | 760 | - | 1.1416 | | 0.0883 | 770 | - | 1.1320 | | 0.0895 | 780 | - | 1.1227 | | 0.0906 | 790 | - | 1.1138 | | 0.0918 | 800 | 2.0044 | 1.1053 | | 0.0929 | 810 | - | 1.0965 | | 0.0941 | 820 | - | 1.0879 | | 0.0952 | 830 | - | 1.0796 | | 0.0964 | 840 | - | 1.0718 | | 0.0975 | 850 | - | 1.0644 | | 0.0987 | 860 | - | 1.0564 | | 0.0998 | 870 | - | 1.0490 | | 0.1010 | 880 | - | 1.0417 | | 0.1021 | 890 | - | 1.0354 | | 0.1032 | 900 | 1.8763 | 1.0296 | | 0.1044 | 910 | - | 1.0239 | | 0.1055 | 920 | - | 1.0180 | | 0.1067 | 930 | - | 1.0123 | | 0.1078 | 940 | - | 1.0065 | | 0.1090 | 950 | - | 1.0008 | | 0.1101 | 960 | - | 0.9950 | | 0.1113 | 970 | - | 0.9894 | | 0.1124 | 980 | - | 0.9840 | | 0.1136 | 990 | - | 0.9793 | | 0.1147 | 1000 | 1.7287 | 0.9752 | | 0.1159 | 1010 | - | 0.9706 | | 0.1170 | 1020 | - | 0.9659 | | 0.1182 | 1030 | - | 0.9615 | | 0.1193 | 1040 | - | 0.9572 | | 0.1205 | 1050 | - | 0.9531 | | 0.1216 | 1060 | - | 0.9494 | | 0.1227 | 1070 | - | 0.9456 | | 0.1239 | 1080 | - | 0.9415 | | 0.1250 | 1090 | - | 0.9377 | | 0.1262 | 1100 | 1.6312 | 0.9339 | | 0.1273 | 1110 | - | 0.9303 | | 0.1285 | 1120 | - | 0.9267 | | 0.1296 | 1130 | - | 0.9232 | | 0.1308 | 1140 | - | 0.9197 | | 0.1319 | 1150 | - | 0.9162 | | 0.1331 | 1160 | - | 0.9128 | | 0.1342 | 1170 | - | 0.9097 | | 0.1354 | 1180 | - | 0.9069 | | 0.1365 | 1190 | - | 0.9040 | | 0.1377 | 1200 | 1.5316 | 0.9010 | | 0.1388 | 1210 | - | 0.8979 | | 0.1400 | 1220 | - | 0.8947 | | 0.1411 | 1230 | - | 0.8915 | | 0.1423 | 1240 | - | 0.8888 | | 0.1434 | 1250 | - | 0.8861 | | 0.1445 | 1260 | - | 0.8833 | | 0.1457 | 1270 | - | 0.8806 | | 0.1468 | 1280 | - | 0.8779 | | 0.1480 | 1290 | - | 0.8748 | | 0.1491 | 1300 | 1.4961 | 0.8718 | | 0.1503 | 1310 | - | 0.8690 | | 0.1514 | 1320 | - | 0.8664 | | 0.1526 | 1330 | - | 0.8635 | | 0.1537 | 1340 | - | 0.8603 | | 0.1549 | 1350 | - | 0.8574 | | 0.1560 | 1360 | - | 0.8545 | | 0.1572 | 1370 | - | 0.8521 | | 0.1583 | 1380 | - | 0.8497 | | 0.1595 | 1390 | - | 0.8474 | | 0.1606 | 1400 | 1.451 | 0.8453 | | 0.1618 | 1410 | - | 0.8429 | | 0.1629 | 1420 | - | 0.8404 | | 0.1640 | 1430 | - | 0.8380 | | 0.1652 | 1440 | - | 0.8357 | | 0.1663 | 1450 | - | 0.8336 | | 0.1675 | 1460 | - | 0.8312 | | 0.1686 | 1470 | - | 0.8289 | | 0.1698 | 1480 | - | 0.8262 | | 0.1709 | 1490 | - | 0.8236 | | 0.1721 | 1500 | 1.4177 | 0.8213 | | 0.1732 | 1510 | - | 0.8189 | | 0.1744 | 1520 | - | 0.8168 | | 0.1755 | 1530 | - | 0.8147 | | 0.1767 | 1540 | - | 0.8127 | | 0.1778 | 1550 | - | 0.8107 | | 0.1790 | 1560 | - | 0.8082 | | 0.1801 | 1570 | - | 0.8059 | | 0.1813 | 1580 | - | 0.8036 | | 0.1824 | 1590 | - | 0.8015 | | 0.1835 | 1600 | 1.3734 | 0.7993 | | 0.1847 | 1610 | - | 0.7970 | | 0.1858 | 1620 | - | 0.7948 | | 0.1870 | 1630 | - | 0.7922 | | 0.1881 | 1640 | - | 0.7900 | | 0.1893 | 1650 | - | 0.7877 | | 0.1904 | 1660 | - | 0.7852 | | 0.1916 | 1670 | - | 0.7829 | | 0.1927 | 1680 | - | 0.7804 | | 0.1939 | 1690 | - | 0.7779 | | 0.1950 | 1700 | 1.3327 | 0.7757 | | 0.1962 | 1710 | - | 0.7738 | | 0.1973 | 1720 | - | 0.7719 | | 0.1985 | 1730 | - | 0.7700 | | 0.1996 | 1740 | - | 0.7679 | | 0.2008 | 1750 | - | 0.7658 | | 0.2019 | 1760 | - | 0.7641 | | 0.2031 | 1770 | - | 0.7621 | | 0.2042 | 1780 | - | 0.7601 | | 0.2053 | 1790 | - | 0.7580 | | 0.2065 | 1800 | 1.2804 | 0.7558 | | 0.2076 | 1810 | - | 0.7536 | | 0.2088 | 1820 | - | 0.7514 | | 0.2099 | 1830 | - | 0.7493 | | 0.2111 | 1840 | - | 0.7473 | | 0.2122 | 1850 | - | 0.7451 | | 0.2134 | 1860 | - | 0.7429 | | 0.2145 | 1870 | - | 0.7408 | | 0.2157 | 1880 | - | 0.7389 | | 0.2168 | 1890 | - | 0.7368 | | 0.2180 | 1900 | 1.2255 | 0.7349 | | 0.2191 | 1910 | - | 0.7328 | | 0.2203 | 1920 | - | 0.7310 | | 0.2214 | 1930 | - | 0.7293 | | 0.2226 | 1940 | - | 0.7277 | | 0.2237 | 1950 | - | 0.7259 | | 0.2248 | 1960 | - | 0.7240 | | 0.2260 | 1970 | - | 0.7221 | | 0.2271 | 1980 | - | 0.7203 | | 0.2283 | 1990 | - | 0.7184 | | 0.2294 | 2000 | 1.2635 | 0.7165 | | 0.2306 | 2010 | - | 0.7150 | | 0.2317 | 2020 | - | 0.7135 | | 0.2329 | 2030 | - | 0.7117 | | 0.2340 | 2040 | - | 0.7099 | | 0.2352 | 2050 | - | 0.7084 | | 0.2363 | 2060 | - | 0.7068 | | 0.2375 | 2070 | - | 0.7054 | | 0.2386 | 2080 | - | 0.7037 | | 0.2398 | 2090 | - | 0.7023 | | 0.2409 | 2100 | 1.1912 | 0.7009 | | 0.2421 | 2110 | - | 0.6991 | | 0.2432 | 2120 | - | 0.6974 | | 0.2444 | 2130 | - | 0.6962 | | 0.2455 | 2140 | - | 0.6950 | | 0.2466 | 2150 | - | 0.6938 | | 0.2478 | 2160 | - | 0.6922 | | 0.2489 | 2170 | - | 0.6909 | | 0.2501 | 2180 | - | 0.6897 | | 0.2512 | 2190 | - | 0.6884 | | 0.2524 | 2200 | 1.2144 | 0.6868 | | 0.2535 | 2210 | - | 0.6856 | | 0.2547 | 2220 | - | 0.6843 | | 0.2558 | 2230 | - | 0.6829 | | 0.2570 | 2240 | - | 0.6817 | | 0.2581 | 2250 | - | 0.6804 | | 0.2593 | 2260 | - | 0.6789 | | 0.2604 | 2270 | - | 0.6775 | | 0.2616 | 2280 | - | 0.6763 | | 0.2627 | 2290 | - | 0.6751 | | 0.2639 | 2300 | 1.1498 | 0.6739 | | 0.2650 | 2310 | - | 0.6725 | | 0.2661 | 2320 | - | 0.6711 | | 0.2673 | 2330 | - | 0.6698 | | 0.2684 | 2340 | - | 0.6684 | | 0.2696 | 2350 | - | 0.6666 | | 0.2707 | 2360 | - | 0.6653 | | 0.2719 | 2370 | - | 0.6638 | | 0.2730 | 2380 | - | 0.6621 | | 0.2742 | 2390 | - | 0.6609 | | 0.2753 | 2400 | 1.1446 | 0.6596 | | 0.2765 | 2410 | - | 0.6582 | | 0.2776 | 2420 | - | 0.6568 | | 0.2788 | 2430 | - | 0.6553 | | 0.2799 | 2440 | - | 0.6541 | | 0.2811 | 2450 | - | 0.6527 | | 0.2822 | 2460 | - | 0.6513 | | 0.2834 | 2470 | - | 0.6496 | | 0.2845 | 2480 | - | 0.6483 | | 0.2856 | 2490 | - | 0.6475 | | 0.2868 | 2500 | 1.1309 | 0.6465 | | 0.2879 | 2510 | - | 0.6455 | | 0.2891 | 2520 | - | 0.6447 | | 0.2902 | 2530 | - | 0.6437 | | 0.2914 | 2540 | - | 0.6428 | | 0.2925 | 2550 | - | 0.6415 | | 0.2937 | 2560 | - | 0.6403 | | 0.2948 | 2570 | - | 0.6392 | | 0.2960 | 2580 | - | 0.6381 | | 0.2971 | 2590 | - | 0.6371 | | 0.2983 | 2600 | 1.1006 | 0.6358 | | 0.2994 | 2610 | - | 0.6348 | | 0.3006 | 2620 | - | 0.6340 | | 0.3017 | 2630 | - | 0.6330 | | 0.3029 | 2640 | - | 0.6319 | | 0.3040 | 2650 | - | 0.6308 | | 0.3052 | 2660 | - | 0.6300 | | 0.3063 | 2670 | - | 0.6291 | | 0.3074 | 2680 | - | 0.6280 | | 0.3086 | 2690 | - | 0.6268 | | 0.3097 | 2700 | 1.0772 | 0.6254 | | 0.3109 | 2710 | - | 0.6243 | | 0.3120 | 2720 | - | 0.6232 | | 0.3132 | 2730 | - | 0.6224 | | 0.3143 | 2740 | - | 0.6215 | | 0.3155 | 2750 | - | 0.6205 | | 0.3166 | 2760 | - | 0.6194 | | 0.3178 | 2770 | - | 0.6183 | | 0.3189 | 2780 | - | 0.6171 | | 0.3201 | 2790 | - | 0.6160 | | 0.3212 | 2800 | 1.0648 | 0.6153 | | 0.3224 | 2810 | - | 0.6141 | | 0.3235 | 2820 | - | 0.6129 | | 0.3247 | 2830 | - | 0.6119 | | 0.3258 | 2840 | - | 0.6109 | | 0.3269 | 2850 | - | 0.6099 | | 0.3281 | 2860 | - | 0.6088 | | 0.3292 | 2870 | - | 0.6079 | | 0.3304 | 2880 | - | 0.6073 | | 0.3315 | 2890 | - | 0.6063 | | 0.3327 | 2900 | 1.0398 | 0.6054 | | 0.3338 | 2910 | - | 0.6044 | | 0.3350 | 2920 | - | 0.6033 | | 0.3361 | 2930 | - | 0.6022 | | 0.3373 | 2940 | - | 0.6012 | | 0.3384 | 2950 | - | 0.6003 | | 0.3396 | 2960 | - | 0.5993 | | 0.3407 | 2970 | - | 0.5986 | | 0.3419 | 2980 | - | 0.5978 | | 0.3430 | 2990 | - | 0.5967 | | 0.3442 | 3000 | 1.0256 | 0.5959 | | 0.3453 | 3010 | - | 0.5947 | | 0.3464 | 3020 | - | 0.5937 | | 0.3476 | 3030 | - | 0.5929 | | 0.3487 | 3040 | - | 0.5920 | | 0.3499 | 3050 | - | 0.5908 | | 0.3510 | 3060 | - | 0.5897 | | 0.3522 | 3070 | - | 0.5888 | | 0.3533 | 3080 | - | 0.5882 | | 0.3545 | 3090 | - | 0.5874 | | 0.3556 | 3100 | 1.0489 | 0.5868 | | 0.3568 | 3110 | - | 0.5860 | | 0.3579 | 3120 | - | 0.5854 | | 0.3591 | 3130 | - | 0.5839 | | 0.3602 | 3140 | - | 0.5830 | | 0.3614 | 3150 | - | 0.5822 | | 0.3625 | 3160 | - | 0.5814 | | 0.3637 | 3170 | - | 0.5808 | | 0.3648 | 3180 | - | 0.5802 | | 0.3660 | 3190 | - | 0.5794 | | 0.3671 | 3200 | 1.038 | 0.5788 | | 0.3682 | 3210 | - | 0.5778 | | 0.3694 | 3220 | - | 0.5770 | | 0.3705 | 3230 | - | 0.5763 | | 0.3717 | 3240 | - | 0.5752 | | 0.3728 | 3250 | - | 0.5745 | | 0.3740 | 3260 | - | 0.5737 | | 0.3751 | 3270 | - | 0.5728 | | 0.3763 | 3280 | - | 0.5720 | | 0.3774 | 3290 | - | 0.5713 | | 0.3786 | 3300 | 1.0058 | 0.5707 | | 0.3797 | 3310 | - | 0.5700 | | 0.3809 | 3320 | - | 0.5690 | | 0.3820 | 3330 | - | 0.5681 | | 0.3832 | 3340 | - | 0.5673 | | 0.3843 | 3350 | - | 0.5669 | | 0.3855 | 3360 | - | 0.5667 | | 0.3866 | 3370 | - | 0.5665 | | 0.3877 | 3380 | - | 0.5659 | | 0.3889 | 3390 | - | 0.5650 | | 0.3900 | 3400 | 1.0413 | 0.5645 | | 0.3912 | 3410 | - | 0.5641 | | 0.3923 | 3420 | - | 0.5635 | | 0.3935 | 3430 | - | 0.5629 | | 0.3946 | 3440 | - | 0.5622 | | 0.3958 | 3450 | - | 0.5617 | | 0.3969 | 3460 | - | 0.5614 | | 0.3981 | 3470 | - | 0.5607 | | 0.3992 | 3480 | - | 0.5603 | | 0.4004 | 3490 | - | 0.5598 | | 0.4015 | 3500 | 0.938 | 0.5596 | | 0.4027 | 3510 | - | 0.5589 | | 0.4038 | 3520 | - | 0.5581 | | 0.4050 | 3530 | - | 0.5571 | | 0.4061 | 3540 | - | 0.5563 | | 0.4073 | 3550 | - | 0.5557 | | 0.4084 | 3560 | - | 0.5551 | | 0.4095 | 3570 | - | 0.5546 | | 0.4107 | 3580 | - | 0.5541 | | 0.4118 | 3590 | - | 0.5535 | | 0.4130 | 3600 | 0.955 | 0.5528 | | 0.4141 | 3610 | - | 0.5522 | | 0.4153 | 3620 | - | 0.5516 | | 0.4164 | 3630 | - | 0.5509 | | 0.4176 | 3640 | - | 0.5503 | | 0.4187 | 3650 | - | 0.5495 | | 0.4199 | 3660 | - | 0.5490 | | 0.4210 | 3670 | - | 0.5481 | | 0.4222 | 3680 | - | 0.5475 | | 0.4233 | 3690 | - | 0.5467 | | 0.4245 | 3700 | 0.9387 | 0.5463 | | 0.4256 | 3710 | - | 0.5459 | | 0.4268 | 3720 | - | 0.5452 | | 0.4279 | 3730 | - | 0.5448 | | 0.4290 | 3740 | - | 0.5443 | | 0.4302 | 3750 | - | 0.5440 | | 0.4313 | 3760 | - | 0.5435 | | 0.4325 | 3770 | - | 0.5430 | | 0.4336 | 3780 | - | 0.5423 | | 0.4348 | 3790 | - | 0.5418 | | 0.4359 | 3800 | 0.9672 | 0.5415 | | 0.4371 | 3810 | - | 0.5413 | | 0.4382 | 3820 | - | 0.5410 | | 0.4394 | 3830 | - | 0.5406 | | 0.4405 | 3840 | - | 0.5403 | | 0.4417 | 3850 | - | 0.5397 | | 0.4428 | 3860 | - | 0.5394 | | 0.4440 | 3870 | - | 0.5386 | | 0.4451 | 3880 | - | 0.5378 | | 0.4463 | 3890 | - | 0.5370 | | 0.4474 | 3900 | 0.926 | 0.5360 | | 0.4485 | 3910 | - | 0.5351 | | 0.4497 | 3920 | - | 0.5346 | | 0.4508 | 3930 | - | 0.5343 | | 0.4520 | 3940 | - | 0.5339 | | 0.4531 | 3950 | - | 0.5337 | | 0.4543 | 3960 | - | 0.5334 | | 0.4554 | 3970 | - | 0.5330 | | 0.4566 | 3980 | - | 0.5327 | | 0.4577 | 3990 | - | 0.5324 | | 0.4589 | 4000 | 0.867 | 0.5319 | | 0.4600 | 4010 | - | 0.5313 | | 0.4612 | 4020 | - | 0.5308 | | 0.4623 | 4030 | - | 0.5300 | | 0.4635 | 4040 | - | 0.5293 | | 0.4646 | 4050 | - | 0.5287 | | 0.4658 | 4060 | - | 0.5284 | | 0.4669 | 4070 | - | 0.5281 | | 0.4681 | 4080 | - | 0.5277 | | 0.4692 | 4090 | - | 0.5272 | | 0.4703 | 4100 | 0.916 | 0.5267 | | 0.4715 | 4110 | - | 0.5260 | | 0.4726 | 4120 | - | 0.5252 | | 0.4738 | 4130 | - | 0.5246 | | 0.4749 | 4140 | - | 0.5239 | | 0.4761 | 4150 | - | 0.5232 | | 0.4772 | 4160 | - | 0.5225 | | 0.4784 | 4170 | - | 0.5221 | | 0.4795 | 4180 | - | 0.5216 | | 0.4807 | 4190 | - | 0.5211 | | 0.4818 | 4200 | 0.9667 | 0.5206 | | 0.4830 | 4210 | - | 0.5204 | | 0.4841 | 4220 | - | 0.5200 | | 0.4853 | 4230 | - | 0.5192 | | 0.4864 | 4240 | - | 0.5187 | | 0.4876 | 4250 | - | 0.5185 | | 0.4887 | 4260 | - | 0.5179 | | 0.4898 | 4270 | - | 0.5173 | | 0.4910 | 4280 | - | 0.5170 | | 0.4921 | 4290 | - | 0.5165 | | 0.4933 | 4300 | 0.9276 | 0.5160 | | 0.4944 | 4310 | - | 0.5154 | | 0.4956 | 4320 | - | 0.5150 | | 0.4967 | 4330 | - | 0.5144 | | 0.4979 | 4340 | - | 0.5141 | | 0.4990 | 4350 | - | 0.5139 | | 0.5002 | 4360 | - | 0.5138 | | 0.5013 | 4370 | - | 0.5136 | | 0.5025 | 4380 | - | 0.5133 | | 0.5036 | 4390 | - | 0.5129 | | 0.5048 | 4400 | 0.9331 | 0.5126 | | 0.5059 | 4410 | - | 0.5123 | | 0.5071 | 4420 | - | 0.5117 | | 0.5082 | 4430 | - | 0.5113 | | 0.5093 | 4440 | - | 0.5108 | | 0.5105 | 4450 | - | 0.5106 | | 0.5116 | 4460 | - | 0.5106 | | 0.5128 | 4470 | - | 0.5106 | | 0.5139 | 4480 | - | 0.5104 | | 0.5151 | 4490 | - | 0.5102 | | 0.5162 | 4500 | 0.907 | 0.5097 | | 0.5174 | 4510 | - | 0.5092 | | 0.5185 | 4520 | - | 0.5086 | | 0.5197 | 4530 | - | 0.5082 | | 0.5208 | 4540 | - | 0.5079 | | 0.5220 | 4550 | - | 0.5075 | | 0.5231 | 4560 | - | 0.5071 | | 0.5243 | 4570 | - | 0.5067 | | 0.5254 | 4580 | - | 0.5066 | | 0.5266 | 4590 | - | 0.5062 | | 0.5277 | 4600 | 0.913 | 0.5059 | | 0.5289 | 4610 | - | 0.5056 | | 0.5300 | 4620 | - | 0.5052 | | 0.5311 | 4630 | - | 0.5046 | | 0.5323 | 4640 | - | 0.5039 | | 0.5334 | 4650 | - | 0.5033 | | 0.5346 | 4660 | - | 0.5030 | | 0.5357 | 4670 | - | 0.5028 | | 0.5369 | 4680 | - | 0.5027 | | 0.5380 | 4690 | - | 0.5023 | | 0.5392 | 4700 | 0.9047 | 0.5020 | | 0.5403 | 4710 | - | 0.5018 | | 0.5415 | 4720 | - | 0.5015 | | 0.5426 | 4730 | - | 0.5009 | | 0.5438 | 4740 | - | 0.5003 | | 0.5449 | 4750 | - | 0.4997 | | 0.5461 | 4760 | - | 0.4991 | | 0.5472 | 4770 | - | 0.4984 | | 0.5484 | 4780 | - | 0.4980 | | 0.5495 | 4790 | - | 0.4980 | | 0.5506 | 4800 | 0.887 | 0.4979 | | 0.5518 | 4810 | - | 0.4975 | | 0.5529 | 4820 | - | 0.4973 | | 0.5541 | 4830 | - | 0.4969 | | 0.5552 | 4840 | - | 0.4966 | | 0.5564 | 4850 | - | 0.4964 | | 0.5575 | 4860 | - | 0.4964 | | 0.5587 | 4870 | - | 0.4960 | | 0.5598 | 4880 | - | 0.4957 | | 0.5610 | 4890 | - | 0.4955 | | 0.5621 | 4900 | 0.8645 | 0.4952 | | 0.5633 | 4910 | - | 0.4950 | | 0.5644 | 4920 | - | 0.4952 | | 0.5656 | 4930 | - | 0.4949 | | 0.5667 | 4940 | - | 0.4943 | | 0.5679 | 4950 | - | 0.4938 | | 0.5690 | 4960 | - | 0.4936 | | 0.5702 | 4970 | - | 0.4933 | | 0.5713 | 4980 | - | 0.4931 | | 0.5724 | 4990 | - | 0.4929 | | 0.5736 | 5000 | 0.8348 | 0.4924 | | 0.5747 | 5010 | - | 0.4921 | | 0.5759 | 5020 | - | 0.4915 | | 0.5770 | 5030 | - | 0.4911 | | 0.5782 | 5040 | - | 0.4909 | | 0.5793 | 5050 | - | 0.4905 | | 0.5805 | 5060 | - | 0.4900 | | 0.5816 | 5070 | - | 0.4892 | | 0.5828 | 5080 | - | 0.4886 | | 0.5839 | 5090 | - | 0.4883 | | 0.5851 | 5100 | 0.871 | 0.4879 | | 0.5862 | 5110 | - | 0.4877 | | 0.5874 | 5120 | - | 0.4874 | | 0.5885 | 5130 | - | 0.4870 | | 0.5897 | 5140 | - | 0.4867 | | 0.5908 | 5150 | - | 0.4864 | | 0.5919 | 5160 | - | 0.4862 | | 0.5931 | 5170 | - | 0.4860 | | 0.5942 | 5180 | - | 0.4857 | | 0.5954 | 5190 | - | 0.4855 | | 0.5965 | 5200 | 0.8522 | 0.4850 | | 0.5977 | 5210 | - | 0.4846 | | 0.5988 | 5220 | - | 0.4844 | | 0.6000 | 5230 | - | 0.4842 | | 0.6011 | 5240 | - | 0.4837 | | 0.6023 | 5250 | - | 0.4835 | | 0.6034 | 5260 | - | 0.4831 | | 0.6046 | 5270 | - | 0.4826 | | 0.6057 | 5280 | - | 0.4822 | | 0.6069 | 5290 | - | 0.4822 | | 0.6080 | 5300 | 0.869 | 0.4820 | | 0.6092 | 5310 | - | 0.4818 | | 0.6103 | 5320 | - | 0.4819 | | 0.6114 | 5330 | - | 0.4819 | | 0.6126 | 5340 | - | 0.4815 | | 0.6137 | 5350 | - | 0.4813 | | 0.6149 | 5360 | - | 0.4812 | | 0.6160 | 5370 | - | 0.4810 | | 0.6172 | 5380 | - | 0.4809 | | 0.6183 | 5390 | - | 0.4806 | | 0.6195 | 5400 | 0.8548 | 0.4805 | | 0.6206 | 5410 | - | 0.4800 | | 0.6218 | 5420 | - | 0.4798 | | 0.6229 | 5430 | - | 0.4795 | | 0.6241 | 5440 | - | 0.4792 | | 0.6252 | 5450 | - | 0.4790 | | 0.6264 | 5460 | - | 0.4790 | | 0.6275 | 5470 | - | 0.4791 | | 0.6287 | 5480 | - | 0.4794 | | 0.6298 | 5490 | - | 0.4792 | | 0.6310 | 5500 | 0.8366 | 0.4790 | | 0.6321 | 5510 | - | 0.4786 | | 0.6332 | 5520 | - | 0.4780 | | 0.6344 | 5530 | - | 0.4773 | | 0.6355 | 5540 | - | 0.4768 | | 0.6367 | 5550 | - | 0.4767 | | 0.6378 | 5560 | - | 0.4765 | | 0.6390 | 5570 | - | 0.4765 | | 0.6401 | 5580 | - | 0.4763 | | 0.6413 | 5590 | - | 0.4760 | | 0.6424 | 5600 | 0.8696 | 0.4757 | | 0.6436 | 5610 | - | 0.4754 | | 0.6447 | 5620 | - | 0.4752 | | 0.6459 | 5630 | - | 0.4751 | | 0.6470 | 5640 | - | 0.4747 | | 0.6482 | 5650 | - | 0.4747 | | 0.6493 | 5660 | - | 0.4742 | | 0.6505 | 5670 | - | 0.4740 | | 0.6516 | 5680 | - | 0.4736 | | 0.6527 | 5690 | - | 0.4730 | | 0.6539 | 5700 | 0.8302 | 0.4725 | | 0.6550 | 5710 | - | 0.4723 | | 0.6562 | 5720 | - | 0.4720 | | 0.6573 | 5730 | - | 0.4718 | | 0.6585 | 5740 | - | 0.4715 | | 0.6596 | 5750 | - | 0.4714 | | 0.6608 | 5760 | - | 0.4711 | | 0.6619 | 5770 | - | 0.4707 | | 0.6631 | 5780 | - | 0.4707 | | 0.6642 | 5790 | - | 0.4703 | | 0.6654 | 5800 | 0.8128 | 0.4703 | | 0.6665 | 5810 | - | 0.4701 | | 0.6677 | 5820 | - | 0.4699 | | 0.6688 | 5830 | - | 0.4697 | | 0.6700 | 5840 | - | 0.4698 | | 0.6711 | 5850 | - | 0.4695 | | 0.6722 | 5860 | - | 0.4691 | | 0.6734 | 5870 | - | 0.4689 | | 0.6745 | 5880 | - | 0.4689 | | 0.6757 | 5890 | - | 0.4688 | | 0.6768 | 5900 | 0.8437 | 0.4683 | | 0.6780 | 5910 | - | 0.4683 | | 0.6791 | 5920 | - | 0.4681 | | 0.6803 | 5930 | - | 0.4678 | | 0.6814 | 5940 | - | 0.4677 | | 0.6826 | 5950 | - | 0.4676 | | 0.6837 | 5960 | - | 0.4673 | | 0.6849 | 5970 | - | 0.4668 | | 0.6860 | 5980 | - | 0.4667 | | 0.6872 | 5990 | - | 0.4661 | | 0.6883 | 6000 | 0.7774 | 0.4657 | | 0.6895 | 6010 | - | 0.4654 | | 0.6906 | 6020 | - | 0.4650 | | 0.6918 | 6030 | - | 0.4648 | | 0.6929 | 6040 | - | 0.4646 | | 0.6940 | 6050 | - | 0.4644 | | 0.6952 | 6060 | - | 0.4643 | | 0.6963 | 6070 | - | 0.4641 | | 0.6975 | 6080 | - | 0.4640 | | 0.6986 | 6090 | - | 0.4638 | | 0.6998 | 6100 | 0.834 | 0.4637 | | 0.7009 | 6110 | - | 0.4633 | | 0.7021 | 6120 | - | 0.4632 | | 0.7032 | 6130 | - | 0.4631 | | 0.7044 | 6140 | - | 0.4628 | | 0.7055 | 6150 | - | 0.4627 | | 0.7067 | 6160 | - | 0.4623 | | 0.7078 | 6170 | - | 0.4617 | | 0.7090 | 6180 | - | 0.4615 | | 0.7101 | 6190 | - | 0.4614 | | 0.7113 | 6200 | 0.8118 | 0.4612 | | 0.7124 | 6210 | - | 0.4612 | | 0.7135 | 6220 | - | 0.4612 | | 0.7147 | 6230 | - | 0.4610 | | 0.7158 | 6240 | - | 0.4609 | | 0.7170 | 6250 | - | 0.4610 | | 0.7181 | 6260 | - | 0.4611 | | 0.7193 | 6270 | - | 0.4607 | | 0.7204 | 6280 | - | 0.4599 | | 0.7216 | 6290 | - | 0.4598 | | 0.7227 | 6300 | 0.7884 | 0.4600 | | 0.7239 | 6310 | - | 0.4599 | | 0.7250 | 6320 | - | 0.4600 | | 0.7262 | 6330 | - | 0.4601 | | 0.7273 | 6340 | - | 0.4603 | | 0.7285 | 6350 | - | 0.4603 | | 0.7296 | 6360 | - | 0.4598 | | 0.7308 | 6370 | - | 0.4597 | | 0.7319 | 6380 | - | 0.4596 | | 0.7331 | 6390 | - | 0.4594 | | 0.7342 | 6400 | 0.8092 | 0.4590 | | 0.7353 | 6410 | - | 0.4588 | | 0.7365 | 6420 | - | 0.4585 | | 0.7376 | 6430 | - | 0.4584 | | 0.7388 | 6440 | - | 0.4580 | | 0.7399 | 6450 | - | 0.4574 | | 0.7411 | 6460 | - | 0.4570 | | 0.7422 | 6470 | - | 0.4566 | | 0.7434 | 6480 | - | 0.4563 | | 0.7445 | 6490 | - | 0.4560 | | 0.7457 | 6500 | 0.8195 | 0.4557 | | 0.7468 | 6510 | - | 0.4556 | | 0.7480 | 6520 | - | 0.4554 | | 0.7491 | 6530 | - | 0.4551 | | 0.7503 | 6540 | - | 0.4548 | | 0.7514 | 6550 | - | 0.4545 | | 0.7526 | 6560 | - | 0.4543 | | 0.7537 | 6570 | - | 0.4541 | | 0.7548 | 6580 | - | 0.4540 | | 0.7560 | 6590 | - | 0.4538 | | 0.7571 | 6600 | 0.8163 | 0.4535 | | 0.7583 | 6610 | - | 0.4533 | | 0.7594 | 6620 | - | 0.4536 | | 0.7606 | 6630 | - | 0.4535 | | 0.7617 | 6640 | - | 0.4533 | | 0.7629 | 6650 | - | 0.4532 | | 0.7640 | 6660 | - | 0.4531 | | 0.7652 | 6670 | - | 0.4531 | | 0.7663 | 6680 | - | 0.4530 | | 0.7675 | 6690 | - | 0.4528 | | 0.7686 | 6700 | 0.8091 | 0.4527 | | 0.7698 | 6710 | - | 0.4527 | | 0.7709 | 6720 | - | 0.4526 | | 0.7721 | 6730 | - | 0.4525 | | 0.7732 | 6740 | - | 0.4524 | | 0.7743 | 6750 | - | 0.4521 | | 0.7755 | 6760 | - | 0.4517 | | 0.7766 | 6770 | - | 0.4514 | | 0.7778 | 6780 | - | 0.4512 | | 0.7789 | 6790 | - | 0.4514 | | 0.7801 | 6800 | 0.8098 | 0.4515 | | 0.7812 | 6810 | - | 0.4514 | | 0.7824 | 6820 | - | 0.4511 | | 0.7835 | 6830 | - | 0.4507 | | 0.7847 | 6840 | - | 0.4505 | | 0.7858 | 6850 | - | 0.4504 | | 0.7870 | 6860 | - | 0.4503 | | 0.7881 | 6870 | - | 0.4500 | | 0.7893 | 6880 | - | 0.4498 | | 0.7904 | 6890 | - | 0.4495 | | 0.7916 | 6900 | 0.7857 | 0.4491 | | 0.7927 | 6910 | - | 0.4490 | | 0.7939 | 6920 | - | 0.4488 | | 0.7950 | 6930 | - | 0.4488 | | 0.7961 | 6940 | - | 0.4488 | | 0.7973 | 6950 | - | 0.4487 | | 0.7984 | 6960 | - | 0.4484 | | 0.7996 | 6970 | - | 0.4482 | | 0.8007 | 6980 | - | 0.4483 | | 0.8019 | 6990 | - | 0.4481 | | 0.8030 | 7000 | 0.7817 | 0.4477 | | 0.8042 | 7010 | - | 0.4476 | | 0.8053 | 7020 | - | 0.4471 | | 0.8065 | 7030 | - | 0.4469 | | 0.8076 | 7040 | - | 0.4468 | | 0.8088 | 7050 | - | 0.4465 | | 0.8099 | 7060 | - | 0.4460 | | 0.8111 | 7070 | - | 0.4458 | | 0.8122 | 7080 | - | 0.4458 | | 0.8134 | 7090 | - | 0.4454 | | 0.8145 | 7100 | 0.779 | 0.4452 | | 0.8156 | 7110 | - | 0.4449 | | 0.8168 | 7120 | - | 0.4448 | | 0.8179 | 7130 | - | 0.4446 | | 0.8191 | 7140 | - | 0.4442 | | 0.8202 | 7150 | - | 0.4442 | | 0.8214 | 7160 | - | 0.4441 | | 0.8225 | 7170 | - | 0.4440 | | 0.8237 | 7180 | - | 0.4437 | | 0.8248 | 7190 | - | 0.4434 | | 0.8260 | 7200 | 0.7807 | 0.4434 | | 0.8271 | 7210 | - | 0.4435 | | 0.8283 | 7220 | - | 0.4433 | | 0.8294 | 7230 | - | 0.4431 | | 0.8306 | 7240 | - | 0.4430 | | 0.8317 | 7250 | - | 0.4428 | | 0.8329 | 7260 | - | 0.4426 | | 0.8340 | 7270 | - | 0.4424 | | 0.8351 | 7280 | - | 0.4428 | | 0.8363 | 7290 | - | 0.4426 | | 0.8374 | 7300 | 0.7724 | 0.4423 | | 0.8386 | 7310 | - | 0.4419 | | 0.8397 | 7320 | - | 0.4418 | | 0.8409 | 7330 | - | 0.4417 | | 0.8420 | 7340 | - | 0.4415 | | 0.8432 | 7350 | - | 0.4413 | | 0.8443 | 7360 | - | 0.4409 | | 0.8455 | 7370 | - | 0.4406 | | 0.8466 | 7380 | - | 0.4405 | | 0.8478 | 7390 | - | 0.4400 | | 0.8489 | 7400 | 0.7898 | 0.4393 | | 0.8501 | 7410 | - | 0.4389 | | 0.8512 | 7420 | - | 0.4384 | | 0.8524 | 7430 | - | 0.4381 | | 0.8535 | 7440 | - | 0.4380 | | 0.8547 | 7450 | - | 0.4380 | | 0.8558 | 7460 | - | 0.4379 | | 0.8569 | 7470 | - | 0.4377 | | 0.8581 | 7480 | - | 0.4377 | | 0.8592 | 7490 | - | 0.4376 | | 0.8604 | 7500 | 0.8009 | 0.4375 | | 0.8615 | 7510 | - | 0.4371 | | 0.8627 | 7520 | - | 0.4369 | | 0.8638 | 7530 | - | 0.4365 | | 0.8650 | 7540 | - | 0.4362 | | 0.8661 | 7550 | - | 0.4359 | | 0.8673 | 7560 | - | 0.4357 | | 0.8684 | 7570 | - | 0.4355 | | 0.8696 | 7580 | - | 0.4351 | | 0.8707 | 7590 | - | 0.4347 | | 0.8719 | 7600 | 0.7847 | 0.4346 | | 0.8730 | 7610 | - | 0.4346 | | 0.8742 | 7620 | - | 0.4344 | | 0.8753 | 7630 | - | 0.4343 | | 0.8764 | 7640 | - | 0.4338 | | 0.8776 | 7650 | - | 0.4336 | | 0.8787 | 7660 | - | 0.4332 | | 0.8799 | 7670 | - | 0.4331 | | 0.8810 | 7680 | - | 0.4329 | | 0.8822 | 7690 | - | 0.4326 | | 0.8833 | 7700 | 0.7668 | 0.4324 | | 0.8845 | 7710 | - | 0.4325 | | 0.8856 | 7720 | - | 0.4327 | | 0.8868 | 7730 | - | 0.4329 | | 0.8879 | 7740 | - | 0.4328 | | 0.8891 | 7750 | - | 0.4325 | | 0.8902 | 7760 | - | 0.4325 | | 0.8914 | 7770 | - | 0.4326 | | 0.8925 | 7780 | - | 0.4324 | | 0.8937 | 7790 | - | 0.4322 | | 0.8948 | 7800 | 0.7987 | 0.4320 | | 0.8960 | 7810 | - | 0.4319 | | 0.8971 | 7820 | - | 0.4318 | | 0.8982 | 7830 | - | 0.4315 | | 0.8994 | 7840 | - | 0.4312 | | 0.9005 | 7850 | - | 0.4308 | | 0.9017 | 7860 | - | 0.4308 | | 0.9028 | 7870 | - | 0.4309 | | 0.9040 | 7880 | - | 0.4306 | | 0.9051 | 7890 | - | 0.4305 | | 0.9063 | 7900 | 0.7691 | 0.4305 | | 0.9074 | 7910 | - | 0.4305 | | 0.9086 | 7920 | - | 0.4308 | | 0.9097 | 7930 | - | 0.4309 | | 0.9109 | 7940 | - | 0.4309 | | 0.9120 | 7950 | - | 0.4305 | | 0.9132 | 7960 | - | 0.4297 | | 0.9143 | 7970 | - | 0.4294 | | 0.9155 | 7980 | - | 0.4292 | | 0.9166 | 7990 | - | 0.4292 | | 0.9177 | 8000 | 0.7828 | 0.4289 |
### Framework Versions - Python: 3.12.8 - Sentence Transformers: 3.4.1 - Transformers: 4.49.0 - PyTorch: 2.2.0+cu121 - Accelerate: 1.4.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```