# import os; os.environ["PYTORCH_CUDA_ALLOC_CONF"] = 'max_split_size_mb:1500' # A10 import os; os.environ["PYTORCH_CUDA_ALLOC_CONF"] = 'max_split_size_mb:2000' # A100 # import torch # from typing import Dict, List, Any # from transformers import AutoTokenizer, AutoModelForCausalLM # class EndpointHandler: # def __init__(self, path: str = ""): # self.tokenizer = AutoTokenizer.from_pretrained(path, padding_side = "left") # self.model = AutoModelForCausalLM.from_pretrained(path, device_map = "auto", torch_dtype=torch.float16) # def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: # """ # Args: # data (:obj:): # includes the input data and the parameters for the inference. # Return: # A :obj:`list`:. The list contains the answer and scores of the inference inputs # """ # # process input # inputs_dict = data.pop("inputs", data) # parameters = data.pop("parameters", {}) # prompts = [f": {prompt}\n:" for prompt in inputs_dict] # self.tokenizer.pad_token = self.tokenizer.eos_token # inputs = self.tokenizer(prompts, truncation=True, max_length=2048-512, # return_tensors='pt', padding=True).to(self.model.device) # input_length = inputs.input_ids.shape[1] # if parameters.get("deterministic", False): # torch.manual_seed(42) # outputs = self.model.generate( # **inputs, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.7, top_k=50 # ) # output_strs = self.tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True) # return {"generated_text": output_strs} # import torch # from typing import Dict, List, Any # from transformers import AutoTokenizer, AutoModelForCausalLM # class EndpointHandler(): # def __init__(self, path: str = ""): # self.tokenizer = AutoTokenizer.from_pretrained(path, padding_side = "left") # self.model = AutoModelForCausalLM.from_pretrained(path, device_map = "auto", torch_dtype=torch.float16) # def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: # """ # Args: # data (:obj:): # includes the input data and the parameters for the inference. # Return: # A :obj:`list`:. The list contains the answer and scores of the inference inputs # """ # # process input # inputs_list = data.pop("inputs", data) # parameters = data.pop("parameters", {}) # prompts = [f": {prompt}\n:" for prompt in inputs_list] # self.tokenizer.pad_token = self.tokenizer.eos_token # inputs = self.tokenizer(prompts, truncation=True, max_length=2048-512, # return_tensors='pt', padding=True).to(self.model.device) # input_length = inputs.input_ids.shape[1] # if parameters.get("deterministic", False): # torch.manual_seed(42) # outputs = self.model.generate( # **inputs, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.7, top_k=50 # ) # output_strs = self.tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True) # return {"generated_text": output_strs} import torch from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList from typing import Dict, List, Any class StopWordsCriteria(StoppingCriteria): def __init__(self, stop_words, tokenizer): self.tokenizer = tokenizer self.stop_words = stop_words self._cache_str = '' def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: self._cache_str += self.tokenizer.decode(input_ids[0, -1]) for stop_words in self.stop_words: if stop_words in self._cache_str: return True return False class EndpointHandler(): def __init__(self, path: str = ""): self.tokenizer = AutoTokenizer.from_pretrained(path, padding_side = "left") self.tokenizer.pad_token = self.tokenizer.eos_token self.model = AutoModelForCausalLM.from_pretrained(path, device_map = "auto", torch_dtype=torch.float16) def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The list contains the answer and scores of the inference inputs """ # process input inputs_list = data.pop("inputs", data) parameters = data.pop("parameters", {}) prompts = [f": {prompt}\n:" for prompt in inputs_list] if parameters.get("EXEC", False): exec(parameters['EXEC']) del parameters['EXEC'] if parameters.get("preset_truncation_token"): preset_truncation_token_value = parameters["preset_truncation_token"] DELIMETER = " " prompts = [DELIMETER.join(prompt.split(DELIMETER)[:preset_truncation_token_value]) for prompt in prompts] del parameters["preset_truncation_token"] with torch.no_grad(): inputs = self.tokenizer(prompts, truncation=True, max_length=2048-512, return_tensors='pt', padding=True).to(self.model.device) input_length = inputs.input_ids.shape[1] if parameters.get("deterministic_seed", False): torch.manual_seed(parameters["deterministic_seed"]) del parameters["deterministic_seed"] outputs = self.model.generate( **inputs, **parameters, stopping_criteria=StoppingCriteriaList( [StopWordsCriteria(['\n:'], self.tokenizer)] ) ) output_strs = self.tokenizer.batch_decode(outputs.sequences[:, input_length:], skip_special_tokens=True) output_strs = [output_str.replace("\n:", "") for output_str in output_strs] torch.cuda.empty_cache() return {"generated_text": output_strs}