import sys import os #replace the path with your hifigan path to import Generator from models.py sys.path.append("hifigan") import argparse import torch from espnet2.bin.tts_inference import Text2Speech from models import Generator from scipy.io.wavfile import write from meldataset import MAX_WAV_VALUE from env import AttrDict import json import yaml from text_preprocess_for_inference import TTSDurAlignPreprocessor, CharTextPreprocessor, TTSPreprocessor SAMPLING_RATE = 22050 def load_hifigan_vocoder(language, gender, device): # Load HiFi-GAN vocoder configuration file and generator model for the specified language and gender vocoder_config = f"vocoder/{gender}/aryan/hifigan/config.json" vocoder_generator = f"vocoder/{gender}/aryan/hifigan/generator" # Read the contents of the vocoder configuration file with open(vocoder_config, 'r') as f: data = f.read() json_config = json.loads(data) h = AttrDict(json_config) torch.manual_seed(h.seed) # Move the generator model to the specified device (CPU or GPU) device = torch.device(device) generator = Generator(h).to(device) state_dict_g = torch.load(vocoder_generator, device) generator.load_state_dict(state_dict_g['generator']) generator.eval() generator.remove_weight_norm() # Return the loaded and prepared HiFi-GAN generator model return generator def load_fastspeech2_model(language, gender, device): #updating the config.yaml fiel based on language and gender with open(f"{language}/{gender}/model/config.yaml", "r") as file: config = yaml.safe_load(file) current_working_directory = os.getcwd() feat="model/feats_stats.npz" pitch="model/pitch_stats.npz" energy="model/energy_stats.npz" feat_path=os.path.join(current_working_directory,language,gender,feat) pitch_path=os.path.join(current_working_directory,language,gender,pitch) energy_path=os.path.join(current_working_directory,language,gender,energy) config["normalize_conf"]["stats_file"] = feat_path config["pitch_normalize_conf"]["stats_file"] = pitch_path config["energy_normalize_conf"]["stats_file"] = energy_path with open(f"{language}/{gender}/model/config.yaml", "w") as file: yaml.dump(config, file) tts_model = f"{language}/{gender}/model/model.pth" tts_config = f"{language}/{gender}/model/config.yaml" return Text2Speech(train_config=tts_config, model_file=tts_model, device=device) def text_synthesis(language, gender, sample_text, vocoder, MAX_WAV_VALUE, device, alpha): # Perform Text-to-Speech synthesis with torch.no_grad(): # Load the FastSpeech2 model for the specified language and gender model = load_fastspeech2_model(language, gender, device) print('Alpha ', alpha) # Generate mel-spectrograms from the input text using the FastSpeech2 model out = model(sample_text, decode_conf={"alpha": alpha}) print("TTS Done") x = out["feat_gen_denorm"].T.unsqueeze(0) * 2.3262 x = x.to(device) # Use the HiFi-GAN vocoder to convert mel-spectrograms to raw audio waveforms y_g_hat = vocoder(x) audio = y_g_hat.squeeze() audio = audio * MAX_WAV_VALUE audio = audio.cpu().numpy().astype('int16') # Return the synthesized audio return audio if __name__ == "__main__": parser = argparse.ArgumentParser(description="Text-to-Speech Inference") parser.add_argument("--language", type=str, required=True, help="Language (e.g., hindi)") parser.add_argument("--gender", type=str, required=True, help="Gender (e.g., female)") parser.add_argument("--sample_text", type=str, required=True, help="Text to be synthesized") parser.add_argument("--output_file", type=str, default="", help="Output WAV file path") parser.add_argument("--alpha", type=float, default=1, help="Alpha Parameter") args = parser.parse_args() phone_dictionary = {} # Set the device device = "cuda" if torch.cuda.is_available() else "cpu" # Load the HiFi-GAN vocoder with dynamic language and gender vocoder = load_hifigan_vocoder(args.language, args.gender, device) if args.language == "urdu" or args.language == "punjabi": preprocessor = CharTextPreprocessor() elif args.language == "english": preprocessor = TTSPreprocessor() else: preprocessor = TTSDurAlignPreprocessor() # Preprocess the sample text preprocessed_text, phrases = preprocessor.preprocess(args.sample_text, args.language, args.gender, phone_dictionary) preprocessed_text = " ".join(preprocessed_text) audio = text_synthesis(args.language, args.gender, preprocessed_text, vocoder, MAX_WAV_VALUE, device, args.alpha) if args.output_file: output_file = f"{args.output_file}" else: output_file = f"{args.language}_{args.gender}_output.wav" write(output_file, SAMPLING_RATE, audio)