--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: vit-base-patch16-224-in21k-4class results: [] --- # vit-base-patch16-224-in21k-4class This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1673 - Train Accuracy: 0.9240 - Train Top-3-accuracy: 0.9960 - Validation Loss: 0.2804 - Validation Accuracy: 0.9284 - Validation Top-3-accuracy: 0.9963 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 231, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 1.1244 | 0.5585 | 0.9362 | 0.8773 | 0.7081 | 0.9753 | 0 | | 0.6801 | 0.7656 | 0.9822 | 0.5789 | 0.8040 | 0.9871 | 1 | | 0.4108 | 0.8329 | 0.9897 | 0.4105 | 0.8548 | 0.9915 | 2 | | 0.2717 | 0.8725 | 0.9927 | 0.3397 | 0.8855 | 0.9937 | 3 | | 0.2123 | 0.8967 | 0.9944 | 0.3307 | 0.9055 | 0.9948 | 4 | | 0.1822 | 0.9126 | 0.9953 | 0.2927 | 0.9187 | 0.9957 | 5 | | 0.1673 | 0.9240 | 0.9960 | 0.2804 | 0.9284 | 0.9963 | 6 | ### Framework versions - Transformers 4.41.2 - TensorFlow 2.15.0 - Datasets 2.20.0 - Tokenizers 0.19.1