--- library_name: peft license: mit --- ## Training procedure HUGGING_FACE_USER_NAME = "sksayril" model_name = "pbp-sayril" import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = f"{HUGGING_FACE_USER_NAME}/{model_name}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model qa_model = PeftModel.from_pretrained(model, peft_model_id) from IPython.display import display, Markdown def make_inference(context, question): batch = tokenizer(f"### CONTEXT\n{context}\n\n### QUESTION\n{question}\n\n### ANSWER\n", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = qa_model.generate(**batch, max_new_tokens=200) display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True)))) context = "Cheese is the best food." question = "What is the best food?" make_inference(context, question) ### Framework versions - PEFT 0.6.0.dev0