--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: ai_art_exp2_vit_renaissance results: [] --- # ai_art_exp2_vit_renaissance This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: {'accuracy': 0.8366666666666667} - Loss: 0.7605 - Overall Accuracy: 0.8367 - Human Accuracy: 0.63 - Ld Accuracy: 0.89 - Sd Accuracy: 0.99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | Overall Accuracy | Human Accuracy | Ld Accuracy | Sd Accuracy | |:-------------:|:-----:|:----:|:--------------------------------:|:---------------:|:----------------:|:--------------:|:-----------:|:-----------:| | 0.9922 | 0.96 | 18 | {'accuracy': 0.8633333333333333} | 0.7544 | 0.8633 | 0.6630 | 0.9292 | 0.9789 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1