--- language: - en --- # Model Card for `passage-ranker.chocolate` This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is used to order search results. Model name: `passage-ranker.chocolate` ## Supported Languages The model was trained and tested in the following languages: - English ## Scores | Metric | Value | |:--------------------|------:| | Relevance (NDCG@10) | 0.484 | Note that the relevance score is computed as an average over 14 retrieval datasets (see [details below](#evaluation-metrics)). ## Inference Times | GPU | Batch size 32 | |:-----------|--------------:| | NVIDIA A10 | 22 ms | | NVIDIA T4 | 64 ms | The inference times only measure the time the model takes to process a single batch, it does not include pre- or post-processing steps like the tokenization. ## Requirements - Minimal Sinequa version: 11.10.0 - GPU memory usage: 550 MiB Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which can be around 0.5 to 1 GiB depending on the used GPU. ## Model Details ### Overview - Number of parameters: 23 million - Base language model: [MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) ([Paper](https://arxiv.org/abs/2002.10957), [GitHub](https://github.com/microsoft/unilm/tree/master/minilm)) - Insensitive to casing and accents - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085) ### Training Data - MS MARCO Passage Ranking ([Paper](https://arxiv.org/abs/1611.09268), [Official Page](https://microsoft.github.io/msmarco/), [dataset on HF hub](https://huggingface.co/datasets/unicamp-dl/mmarco)) ### Evaluation Metrics To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English. | Dataset | NDCG@10 | |:------------------|--------:| | Average | 0.486 | | | | | Arguana | 0.554 | | CLIMATE-FEVER | 0.209 | | DBPedia Entity | 0.367 | | FEVER | 0.744 | | FiQA-2018 | 0.339 | | HotpotQA | 0.685 | | MS MARCO | 0.412 | | NFCorpus | 0.352 | | NQ | 0.454 | | Quora | 0.818 | | SCIDOCS | 0.158 | | SciFact | 0.658 | | TREC-COVID | 0.674 | | Webis-Touche-2020 | 0.345 |