--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large-sst-2-16-13-30 results: [] --- # roberta-large-sst-2-16-13-30 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6901 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6957 | 0.5 | | No log | 2.0 | 2 | 0.6955 | 0.5 | | No log | 3.0 | 3 | 0.6952 | 0.5 | | No log | 4.0 | 4 | 0.6944 | 0.5 | | No log | 5.0 | 5 | 0.6937 | 0.5 | | No log | 6.0 | 6 | 0.6933 | 0.5 | | No log | 7.0 | 7 | 0.6929 | 0.5 | | No log | 8.0 | 8 | 0.6942 | 0.5 | | No log | 9.0 | 9 | 0.6931 | 0.5 | | 0.6903 | 10.0 | 10 | 0.6917 | 0.5 | | 0.6903 | 11.0 | 11 | 0.6905 | 0.5 | | 0.6903 | 12.0 | 12 | 0.6891 | 0.5312 | | 0.6903 | 13.0 | 13 | 0.6883 | 0.625 | | 0.6903 | 14.0 | 14 | 0.6874 | 0.6562 | | 0.6903 | 15.0 | 15 | 0.6849 | 0.5312 | | 0.6903 | 16.0 | 16 | 0.6822 | 0.5312 | | 0.6903 | 17.0 | 17 | 0.6790 | 0.5 | | 0.6903 | 18.0 | 18 | 0.6742 | 0.5 | | 0.6903 | 19.0 | 19 | 0.6650 | 0.5312 | | 0.626 | 20.0 | 20 | 0.6524 | 0.5312 | | 0.626 | 21.0 | 21 | 0.6444 | 0.5312 | | 0.626 | 22.0 | 22 | 0.6361 | 0.5625 | | 0.626 | 23.0 | 23 | 0.6327 | 0.5938 | | 0.626 | 24.0 | 24 | 0.6337 | 0.625 | | 0.626 | 25.0 | 25 | 0.6437 | 0.625 | | 0.626 | 26.0 | 26 | 0.6580 | 0.6562 | | 0.626 | 27.0 | 27 | 0.6725 | 0.6562 | | 0.626 | 28.0 | 28 | 0.6812 | 0.625 | | 0.626 | 29.0 | 29 | 0.6873 | 0.625 | | 0.4393 | 30.0 | 30 | 0.6901 | 0.625 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3