--- library_name: transformers license: gemma base_model: google/gemma-7b tags: - alignment-handbook - trl - orpo - generated_from_trainer - trl - orpo - alignment-handbook - generated_from_trainer datasets: - argilla/dpo-mix-7k model-index: - name: gemma-7b-orpo results: [] --- # gemma-7b-orpo This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set: - Loss: 1.7559 - Rewards/chosen: -0.0650 - Rewards/rejected: -0.0764 - Rewards/accuracies: 0.5971 - Rewards/margins: 0.0114 - Logps/rejected: -1.5282 - Logps/chosen: -1.3004 - Logits/rejected: 266.0260 - Logits/chosen: 295.6202 - Nll Loss: 1.6941 - Log Odds Ratio: -0.6992 - Log Odds Chosen: 0.3721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.3309 | 1.0 | 1259 | 1.4432 | -0.0513 | -0.0583 | 0.5468 | 0.0071 | -1.1666 | -1.0254 | 310.9833 | 338.2715 | 1.3964 | -0.7034 | 0.2119 | | 0.647 | 2.0 | 2518 | 1.4816 | -0.0529 | -0.0637 | 0.5899 | 0.0108 | -1.2742 | -1.0583 | 296.0398 | 324.3109 | 1.4304 | -0.6778 | 0.3416 | | 0.348 | 3.0 | 3777 | 1.7559 | -0.0650 | -0.0764 | 0.5971 | 0.0114 | -1.5282 | -1.3004 | 266.0260 | 295.6202 | 1.6941 | -0.6992 | 0.3721 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1