--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-finetuned-dapt-ner-music results: [] --- # silviacamplani/distilbert-finetuned-dapt-ner-music This model is a fine-tuned version of [silviacamplani/distilbert-finetuned-dapt-lm-ai](https://huggingface.co/silviacamplani/distilbert-finetuned-dapt-lm-ai) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7656 - Validation Loss: 0.8288 - Train Precision: 0.5590 - Train Recall: 0.5968 - Train F1: 0.5773 - Train Accuracy: 0.7761 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.5668 | 1.9780 | 0.0 | 0.0 | 0.0 | 0.5482 | 0 | | 1.7189 | 1.4888 | 0.1152 | 0.0396 | 0.0589 | 0.5905 | 1 | | 1.3060 | 1.2236 | 0.3797 | 0.3564 | 0.3677 | 0.6839 | 2 | | 1.0982 | 1.0637 | 0.4716 | 0.4635 | 0.4675 | 0.7155 | 3 | | 0.9450 | 0.9504 | 0.5176 | 0.5167 | 0.5171 | 0.7385 | 4 | | 0.8398 | 0.8775 | 0.5474 | 0.5671 | 0.5570 | 0.7579 | 5 | | 0.7656 | 0.8288 | 0.5590 | 0.5968 | 0.5773 | 0.7761 | 6 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1