--- language: - en - de tags: - translation - opus-mt license: cc-by-4.0 model-index: - name: opus-mt-tc-big-eng-deu results: - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: Tatoeba-test.eng-deu type: tatoeba_mt args: eng-deu metrics: - name: BLEU type: bleu value: 45.7 --- # Opus Tatoeba English-German *This model was obtained by running the script [convert_marian_to_pytorch.py](https://github.com/huggingface/transformers/blob/master/src/transformers/models/marian/convert_marian_to_pytorch.py) - [Instruction available here](https://github.com/huggingface/transformers/tree/main/scripts/tatoeba). The original models were trained by [Jörg Tiedemann](https://blogs.helsinki.fi/tiedeman/) using the [MarianNMT](https://marian-nmt.github.io/) library. See all available `MarianMTModel` models on the profile of the [Helsinki NLP](https://huggingface.co/Helsinki-NLP) group. This is the conversion of checkpoint [opus+bt-2021-04-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opus+bt-2021-04-13.zip) * --- ### eng-deu * source language name: English * target language name: German * OPUS readme: [README.md](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/README.md) * model: transformer-align * source language code: en * target language code: de * dataset: opus+bt * release date: 2021-02-22 * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus+bt-2021-04-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opus+bt-2021-04-13.zip) * Test set translations data: [opus+bt-2021-04-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opus+bt-2021-04-13.test.txt) * test set scores file: [opus+bt-2021-04-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opus+bt-2021-04-13.eval.txt) * Benchmarks |Test set|BLEU|chr-F| |---|---|---| |newssyscomb2009.eng-deu|22.8|0.538| |news-test2008.eng-deu|23.7|0.533| |newstest2009.eng-deu|22.6|0.532| |newstest2010.eng-deu|25.5|0.552| |newstest2011.eng-deu|22.6|0.527| |newstest2012.eng-deu|23.4|0.530| |newstest2013.eng-deu|27.1|0.556| |newstest2014-deen.eng-deu|29.6|0.599| |newstest2015-ende.eng-deu|31.6|0.600| |newstest2016-ende.eng-deu|37.2|0.644| |newstest2017-ende.eng-deu|30.6|0.595| |newstest2018-ende.eng-deu|45.6|0.696| |newstest2019-ende.eng-deu|41.3|0.659| |Tatoeba-test.eng-deu|45.7|0.654|