--- license: afl-3.0 --- **Please use 'Bert' related tokenizer classes and 'Nezha' related model classes** [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. The original checkpoints can be found [here](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-PyTorch) ## Example Usage ``` from transformers import BertTokenizer, NezhaModel tokenizer = BertTokenizer.from_pretrained("sijunhe/nezha-base-wwm") model = NezhaModel.from_pretrained("sijunhe/nezha-base-wwm") text = "我爱北京天安门" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ```