--- language: - pt license: mit base_model: RodrigoLimaRFL/distil-whisper-nurc-sp-fine-tuned tags: - generated_from_trainer datasets: - nilc-nlp/CORAA-MUPE-ASR metrics: - wer model-index: - name: CORAA-MUPE-ASR distil-whisper fine-tuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: CORAA-MUPE-ASR type: nilc-nlp/CORAA-MUPE-ASR config: default split: test args: 'split: test' metrics: - name: Wer type: wer value: 15.273584751709397 --- # CORAA-MUPE-ASR distil-whisper fine-tuned This model is a fine-tuned version of [RodrigoLimaRFL/distil-whisper-nurc-sp-fine-tuned](https://huggingface.co/RodrigoLimaRFL/distil-whisper-nurc-sp-fine-tuned) on the CORAA-MUPE-ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.3488 - Wer: 15.2736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4451 | 0.0558 | 1000 | 0.4482 | 18.5598 | | 0.4006 | 0.1116 | 2000 | 0.4095 | 17.3061 | | 0.2992 | 0.1674 | 3000 | 0.3848 | 16.5660 | | 0.2781 | 0.2232 | 4000 | 0.3609 | 15.5857 | | 0.2839 | 0.2790 | 5000 | 0.3488 | 15.2736 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1