--- license: apache-2.0 tags: - generated_from_trainer datasets: - rotten_tomatoes metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: rotten_tomatoes type: rotten_tomatoes config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.84 - name: F1 type: f1 value: 0.8431372549019608 --- # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes dataset. It achieves the following results on the evaluation set: - Loss: 0.3908 - Accuracy: 0.84 - F1: 0.8431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2