--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer datasets: - pcuenq/oxford-pets metrics: - accuracy model-index: - name: vit-base-oxford-iiit-pets results: [] --- # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2048 - Accuracy: 0.9432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7025 | 1.0 | 185 | 0.3849 | 0.9242 | | 0.2944 | 2.0 | 370 | 0.2704 | 0.9337 | | 0.2129 | 3.0 | 555 | 0.2417 | 0.9378 | | 0.1761 | 4.0 | 740 | 0.2305 | 0.9350 | | 0.157 | 5.0 | 925 | 0.2281 | 0.9378 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1