--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Medium Fine Tuned 3000 Names SSD superU results: [] --- # Whisper Medium Fine Tuned 3000 Names SSD superU This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1246 - Wer: 26.1364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4987 | 0.2392 | 100 | 0.4556 | 51.7045 | | 0.4092 | 0.4785 | 200 | 0.3531 | 48.5795 | | 0.3696 | 0.7177 | 300 | 0.3179 | 48.0114 | | 0.2694 | 0.9569 | 400 | 0.2911 | 38.6364 | | 0.2162 | 1.1962 | 500 | 0.2809 | 36.6477 | | 0.2378 | 1.4354 | 600 | 0.2682 | 34.9432 | | 0.2057 | 1.6746 | 700 | 0.1950 | 28.9773 | | 0.1681 | 1.9139 | 800 | 0.2118 | 36.3636 | | 0.1217 | 2.1531 | 900 | 0.1847 | 26.9886 | | 0.1235 | 2.3923 | 1000 | 0.1722 | 25.5682 | | 0.1203 | 2.6316 | 1100 | 0.1655 | 26.7045 | | 0.1182 | 2.8708 | 1200 | 0.1704 | 28.9773 | | 0.062 | 3.1100 | 1300 | 0.1566 | 26.9886 | | 0.0835 | 3.3493 | 1400 | 0.1455 | 23.8636 | | 0.0738 | 3.5885 | 1500 | 0.1387 | 24.1477 | | 0.0849 | 3.8278 | 1600 | 0.1354 | 25.0 | | 0.0419 | 4.0670 | 1700 | 0.1298 | 24.4318 | | 0.0512 | 4.3062 | 1800 | 0.1302 | 26.4205 | | 0.0524 | 4.5455 | 1900 | 0.1251 | 26.4205 | | 0.0411 | 4.7847 | 2000 | 0.1246 | 26.1364 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.2.2+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3