{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ecf0d19c680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719913771784133322, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYyBz3Y1ZE/4rzAPbQwzL5iASE9Sx9bPQAAAAAAAAAA7XwLPsQvgj/942Q+GuO0vvD3TD7+7Pk8AAAAAAAAAABA9EE+u9GFP+VpED7AVse+ditkPmrdSr0AAAAAAAAAAE1aSz0E6RI+N16FvZXbUL5rnr68w8BpvQAAAAAAAAAAmrgmvn7Icj9yiry+IDkRv+ENhb6ORO68AAAAAAAAAABA3qK9sQxCPwZgmb139eS+swjMvWMasrwAAAAAAAAAAJrTYD0Xfxk/Cuz/PcZieL5rk0g9xnktPQAAAAAAAAAAZqbXO3FUZLsHaJk8i1GTPLTTvzztT3y9AACAPwAAgD/NHNI8SgLMPmBZ9D0gInG+SPvIPOWvkj0AAAAAAAAAAGaCVTz90ik+KCHnPK3nOb5u0N89FpvTvQAAAAAAAAAAM/a6PaGr6T0qYCG+Gy5cvg7tZL0LZb68AAAAAAAAAABgVF8+SPaxPqhxTb6Csm++KQQcvfq10TwAAAAAAAAAAOYNYj3hOJ26Cs41uDcHHLNk64U5k9pRNwAAgD8AAIA/AACqu1pCgj83sRO9WpfVvkCfvbzvNoy9AAAAAAAAAAAAHRo9SP+ZugNM1LdEe1iyr8LXuXrA8TYAAIA/AACAPxZhgb44UJE+dl/OPn5jXr7RCB09ya4aPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGQ6TbFjuuMAWyUTSwBjAF0lEdAmyVtFa0Qb3V9lChoBkdAcUxYjjaPCGgHTYMBaAhHQJslvkFOful1fZQoaAZHQHJpSWRigChoB00QAWgIR0CbJiHVPN3XdX2UKGgGR0Bynv0QK8cuaAdN4QFoCEdAmygYxtYSx3V9lChoBkdAcWxS/0ulGmgHTZEBaAhHQJsoS9i+cpd1fZQoaAZHQHHqY2XLNfRoB00lAWgIR0CbKNSP2f03dX2UKGgGR0BNaMC9ytFKaAdLxmgIR0CbLMQnx8UmdX2UKGgGR0ByANEhJRO2aAdNKQFoCEdAmy1s2WIGhXV9lChoBkdAcEgLCemNzmgHTToBaAhHQJstpYPoV211fZQoaAZHQHF++TaCcwxoB01VAWgIR0CbLddy1eBydX2UKGgGR0BxLOwB5ooNaAdNiAFoCEdAmy572tdRi3V9lChoBkdAcPIs7+1jRWgHTegBaAhHQJsu5XXAdn11fZQoaAZHQGz9oznA6+5oB00dAWgIR0CbMFbkfcN6dX2UKGgGR0Bu0yvV3EAHaAdNAQFoCEdAmzCKz7di2HV9lChoBkdAcWEGvwEyL2gHTXcBaAhHQJsxIp6QeV91fZQoaAZHQG+/QsGxD9hoB00hAWgIR0CbMYjaPCEYdX2UKGgGR0Byn2rIYFaCaAdNEAFoCEdAmzGvhQ3xWnV9lChoBkdAcKcHdGiHqWgHTRcBaAhHQJs1Qe6qbSZ1fZQoaAZHQHGjr961LJ1oB01QAWgIR0CbNq6cy31BdX2UKGgGR0BwuVzKcNH6aAdNOgJoCEdAmzcsAvL5h3V9lChoBkdAcGyp7kXDWWgHTWQBaAhHQJs3i/qPfbd1fZQoaAZHQHHAwarFOwhoB00mAWgIR0CbOPHaews5dX2UKGgGR0BwBJUXHim3aAdNBQFoCEdAmzj7M9r433V9lChoBkdAcWUNgSeyzGgHTR0BaAhHQJs5TvZyuIR1fZQoaAZHQHMy4VM23rloB00lAWgIR0CbOU7nPmgbdX2UKGgGR0BwrjChvitJaAdNJQFoCEdAmzlvEfkmyHV9lChoBkdAciZ8neBQN2gHTRsBaAhHQJs57FsHjZN1fZQoaAZHQGy+kgOjIq9oB00FAWgIR0CbOr4wRGtqdX2UKGgGR0ByBME7nxJ/aAdNQgFoCEdAmzxAr1/UfHV9lChoBkdAck4xB3RoiGgHTTIBaAhHQJs8eohpxm11fZQoaAZHQGZcYp+c6NloB03oA2gIR0CbPNWP91lodX2UKGgGR0Bw3pOh0yP/aAdNSQFoCEdAmz1Jiy6cy3V9lChoBkdAcWwNGViWmmgHTXoBaAhHQJs9x51Ng0F1fZQoaAZHQG9558Sf16FoB00pAWgIR0CbPsm16Vt5dX2UKGgGR0BxjaO0b961aAdNFwFoCEdAmz9ILw4KhXV9lChoBkdAcBonf2saKmgHTSMBaAhHQJtAH2RJVbR1fZQoaAZHQHD/2a6STyJoB00AAWgIR0CbQKzxwyZbdX2UKGgGR0BwPmIuXeFdaAdNBwFoCEdAm0E/i97F9HV9lChoBkdAcnT/9pAUtmgHS/5oCEdAm0Gdh/iHZnV9lChoBkdAcIJNjslb/2gHTREBaAhHQJtVcN4JNTN1fZQoaAZHQHISM0k4WDZoB01QAWgIR0CbVZw2ETQFdX2UKGgGR0BzuUhStNi6aAdL32gIR0CbVfUdJaq0dX2UKGgGR0ByJ87hegL7aAdNTgFoCEdAm1YB/ustCnV9lChoBkdAcOT7Gecx02gHS+9oCEdAm1Yfub7TD3V9lChoBkdAcC7+cYqG12gHTVkBaAhHQJtWNg5R0lt1fZQoaAZHQHGu/7zkIX1oB02aAWgIR0CbVoTr3TNMdX2UKGgGR0BxTuJLuhK2aAdNHgFoCEdAm1cfnjhky3V9lChoBkdAcr5Lzf779GgHS9JoCEdAm1dunqFAV3V9lChoBkdAcDowazeGf2gHTRYBaAhHQJtXv8EV32V1fZQoaAZHQHHjEUKzAvdoB00gAWgIR0CbWGlI3BHkdX2UKGgGR0Bw4+VE/jbSaAdNAgFoCEdAm1kK8L8aXXV9lChoBkdAb4e1UEPlMmgHTQABaAhHQJtZpnzxwyZ1fZQoaAZHQENgvnKW9lFoB0uwaAhHQJtaH/Pw/gR1fZQoaAZHQHKi2Ya5wwVoB0vwaAhHQJtaJ6ol2Nh1fZQoaAZHQG0LOdPLxI9oB01RAWgIR0CbXJCXyAhCdX2UKGgGR0Bv944jrzGxaAdNCAFoCEdAm10+VxCIDnV9lChoBkdAc1MCjDbaiGgHTUkBaAhHQJtdWCvovBd1fZQoaAZHQHEjEJv5xipoB00mAWgIR0CbXa82Jiy6dX2UKGgGR0BwA76UJOWTaAdNIwFoCEdAm16F8G9pRHV9lChoBkdAcc307KaG6GgHTS0BaAhHQJteraTOgQJ1fZQoaAZHQHJ5lQyhzvJoB00eAWgIR0CbXu79ycTbdX2UKGgGR0Bv3HqZ+hGpaAdL/WgIR0CbX6Be5WildX2UKGgGR0BPPBXbM5fdaAdL6GgIR0CbX+clPacqdX2UKGgGR0Bx8klWwNb1aAdNSQFoCEdAm2ACNjslcHV9lChoBkdASLF/BnBciWgHS9hoCEdAm2AowM6RyXV9lChoBkdAcRSKJ2t+1GgHTSYBaAhHQJtgldnkDIR1fZQoaAZHQG/CowdsBQxoB002AWgIR0CbYLSLIgeSdX2UKGgGR0BKGCK77Kq5aAdL0WgIR0CbYL3I+4b0dX2UKGgGR0Bv3fSc9W6taAdL+mgIR0CbYnYIBzV+dX2UKGgGR0BzIjmgam4zaAdNJwFoCEdAm2QWRvFWGXV9lChoBkdATCUo2GZeA2gHS85oCEdAm2ZHNPgvUXV9lChoBkdAQS0W9DhLoWgHS8FoCEdAm2bVwPy08nV9lChoBkdAceT1KoQ4CWgHTRABaAhHQJtnjh60IC51fZQoaAZHQHGnBz3h4t9oB00KAWgIR0CbZ8zTWoWIdX2UKGgGR0BxS8+8oQWfaAdNLQFoCEdAm2fm4iHIqHV9lChoBkdAblHTCtRvWGgHTSUBaAhHQJtpYWFev6l1fZQoaAZHQG/sc3VCojxoB00HAWgIR0CbaYm0E5hjdX2UKGgGR0BysbH93r2QaAdNJgFoCEdAm2ovixVyWHV9lChoBkdAceWtQKrq+2gHTUQBaAhHQJtqa6ErXlN1fZQoaAZHQHKGgIdELIBoB01zAWgIR0CbarGzru6VdX2UKGgGR0Bx4y+/QBxQaAdNIgFoCEdAm2rcT8HfM3V9lChoBkdATHI593KSxWgHS+ZoCEdAm2rzasZHeHV9lChoBkdAbf/Ackt292gHTSQBaAhHQJtrCfkFOfx1fZQoaAZHQHATUR8MNMJoB01EAWgIR0Cba2QVsUItdX2UKGgGR0Bx9lF/hESeaAdNBAFoCEdAm2zZOerdWXV9lChoBkdASFxRjz7MxGgHS9doCEdAm22+VopQUHV9lChoBkdAcEc/2kBS1mgHS/NoCEdAm23OsYEW7HV9lChoBkdAcjWKCg9Ne2gHTR0BaAhHQJtvS4PPLPl1fZQoaAZHwA7ZSWJJoTRoB0vCaAhHQJtvnFcY64l1fZQoaAZHQEEV5Jsfq5doB0vTaAhHQJtv4pSaVlh1fZQoaAZHQG60ccMmWt5oB006AWgIR0CbcM4qwyIpdX2UKGgGR0BwmCXF98Z2aAdNDwFoCEdAm3D3o9s7+3V9lChoBkdAcQMyIHkcTGgHTQ4CaAhHQJtxiZqmCRR1fZQoaAZHQHDoz5bhWHVoB0v3aAhHQJtx4c5sCT51fZQoaAZHQFLeHvc8DCBoB0vLaAhHQJty4Lw4KhN1fZQoaAZHQHDTKODJ2dNoB02KAWgIR0Cbc2gNgBtDdX2UKGgGR0BwfouscQyzaAdNZQFoCEdAm3PbJbMX8HV9lChoBkdAcGm93r2QGWgHTToBaAhHQJtz5wQ176Z1fZQoaAZHQHKg01l5GBpoB01EAWgIR0CbdALyMDOkdX2UKGgGR0BvmzpLVWjoaAdNMQFoCEdAm3Q6/IsAenVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Tue Jun 18 14:18:04 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}