import os import datasets, transformers from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, set_seed from transformers.optimization import get_scheduler from datasets import load_dataset, DownloadConfig import torch from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from torch.utils.tensorboard import SummaryWriter from torch.optim import AdamW import logging import wandb from huggingface_hub import Repository, create_branch from accelerate import Accelerator from argparse import Namespace # Set the API token as an environment variable os.environ["TOKENIZERS_PARALLELISM"] = "false" def save_checkpoint_state(): dir_name = "./torch_checkpoint" os.makedirs(dir_name, exist_ok=True) checkpoint = { "lr_scheduler": lr_scheduler.state_dict(), "completed_steps": completed_steps, "run_name": run_name, "optimizer": optimizer.state_dict(), "run_id": wandb_id } torch.save(checkpoint, f"torch_checkpoint/latest_checkpoint.pth") class ConstantLengthDataset(IterableDataset): def __init__( self, tokenizer, dataset, seq_length=1024, num_of_sequences=1024, chars_per_token=3.6, ): self.tokenizer = tokenizer self.concat_token_id = tokenizer.eos_token_id self.dataset = dataset self.seq_length = seq_length self.input_characters = seq_length * chars_per_token * num_of_sequences def __iter__(self): iterator = iter(self.dataset) more_examples = True while more_examples: buffer, buffer_len = [], 0 while True: if buffer_len >= self.input_characters: m = f"Buffer full: {buffer_len}>={self.input_characters:.0f}" # print(m) break try: m = f"Fill buffer: {buffer_len}<{self.input_characters:.0f}" # print(m) buffer.append(next(iterator)["content"]) buffer_len += len(buffer[-1]) except StopIteration: # iterator = iter(self.dataset) more_examples = False break all_token_ids = [] tokenized_inputs = self.tokenizer(buffer, truncation=False) for tokenized_input in tokenized_inputs["input_ids"]: all_token_ids.extend(tokenized_input + [self.concat_token_id]) for i in range(0, len(all_token_ids), self.seq_length): input_ids = all_token_ids[i : i + self.seq_length] if len(input_ids) == self.seq_length: yield torch.tensor(input_ids) def setup_logging(project_name): logger = logging.getLogger(__name__) dir_name = "./log" if not os.path.exists(dir_name): os.makedirs(dir_name) print(f"Directory '{dir_name}' was created.") else: print(f"Directory '{dir_name}' already exists.") # setting up log directory logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[ logging.FileHandler(f"log/debug_{accelerator.process_index}.log"), logging.StreamHandler(), ], ) if accelerator.is_main_process: # We only want to set up logging once wandb.init(project=project_name, config=args, dir="./../") run_name = wandb.run.name wandb_id = wandb.run.id tb_writer = SummaryWriter() tb_writer.add_hparams(vars(args), {"0": 0}) logger.setLevel(logging.INFO) datasets.utils.logging.set_verbosity_debug() transformers.utils.logging.set_verbosity_info() else: tb_writer = None run_name = "" wandb_id = "" logger.setLevel(logging.ERROR) datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() return logger, tb_writer, run_name, wandb_id def create_dataloaders(dataset_name): train_data = load_dataset(dataset_name + "-train", split="train", streaming=True) train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed) valid_data = load_dataset(dataset_name + "-valid", split="validation", streaming=True) train_dataset = ConstantLengthDataset(tokenizer, train_data, seq_length=args.seq_length) valid_dataset = ConstantLengthDataset(tokenizer, valid_data, seq_length=args.seq_length) train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size, num_workers=96) eval_dataloader = DataLoader(valid_dataset, batch_size=args.valid_batch_size, num_workers=1) return train_dataloader, eval_dataloader def log_metrics(step, metrics): logger.info(f"Step {step}: {metrics}") if accelerator.is_main_process: wandb.log(metrics) [tb_writer.add_scalar(k, v, step) for k, v in metrics.items()] def get_grouped_params(model, no_decay=["bias", "LayerNorm.weight"]): params_with_wd, params_without_wd = [], [] for n, p in model.named_parameters(): if any(nd in n for nd in no_decay): params_without_wd.append(p) else: params_with_wd.append(p) return [ {"params": params_with_wd, "weight_decay": args.weight_decay}, {"params": params_without_wd, "weight_decay": 0.0}, ] def evaluate(): model.eval() losses = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(batch, labels=batch) loss = outputs.loss.repeat(args.valid_batch_size) losses.append(accelerator.gather(loss)) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break loss = torch.mean(torch.cat(losses)) try: perplexity = torch.exp(loss) except OverflowError: perplexity = torch.tensor(float("inf")) return loss.item(), perplexity.item() # Accelerator accelerator = Accelerator(dispatch_batches=True) acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()} project_name = "shng2025/gptesla-small" dataset_name = "shng2025/gptesla" # GPTesla - 111M param setup in comment. Modification to make lighter training requirement needed config = { "train_batch_size": 12, # 12 "valid_batch_size": 12, # 12 "weight_decay": 0.1, "shuffle_buffer": 1000, "learning_rate": 5e-4, # 5e-4 "lr_scheduler_type": "cosine", "num_warmup_steps": 700, # 2000 "gradient_accumulation_steps": 1, # 1 "max_train_steps": 50000, # 150000 "max_eval_steps": 10, "seq_length": 1024, "seed": 1, "save_checkpoint_steps": 50, } # 15000 args = Namespace(**config, **acc_state) samples_per_step = accelerator.state.num_processes * args.train_batch_size set_seed(args.seed) # Logging logger, tb_writer, run_name, wandb_id = setup_logging(project_name.split("/")[1]) logger.info(accelerator.state) # Load model and tokenizer if accelerator.is_main_process: new_branch_name = run_name create_branch(project_name, repo_type="model", branch=new_branch_name) hf_repo = Repository("./", clone_from=project_name, revision=run_name) model = AutoModelForCausalLM.from_pretrained("./") # , gradient_checkpointing=True) tokenizer = AutoTokenizer.from_pretrained("./") # Load dataset and dataloader train_dataloader, eval_dataloader = create_dataloaders(dataset_name) # Prepare the optimizer and learning rate scheduler optimizer = AdamW(get_grouped_params(model), lr=args.learning_rate) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) def get_lr(): return optimizer.param_groups[0]["lr"] # Prepare everything with our `accelerator` (order of args is not important) model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) print(wandb_id) # Train model model.train() completed_steps = 0 for step, batch in enumerate(train_dataloader, start=1): loss = model(batch, labels=batch).loss log_metrics( step, { "lr": get_lr(), "samples": step * samples_per_step, "steps": completed_steps, "loss/train": loss.item(), }, ) loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() completed_steps += 1 if step % args.save_checkpoint_steps == 0: logger.info("Evaluating and saving model checkpoint") eval_loss, perplexity = evaluate() log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity}) accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) if accelerator.is_main_process: save_checkpoint_state() unwrapped_model.save_pretrained("./") hf_repo.push_to_hub(commit_message=f"step {step}") model.train() if completed_steps >= args.max_train_steps: break # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") eval_loss, perplexity = evaluate() log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity}) accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) if accelerator.is_main_process: unwrapped_model.save_pretrained("./") hf_repo.push_to_hub(commit_message="final model")