import torch from transformers import BartForConditionalGeneration, BartTokenizer, GPT2LMHeadModel, GPT2Tokenizer import argparse import sys class AdvancedSummarizer: def __init__(self, model_name="facebook/bart-large-cnn"): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = BartForConditionalGeneration.from_pretrained(model_name).to(self.device) self.tokenizer = BartTokenizer.from_pretrained(model_name) def summarize(self, text, max_length=150, min_length=50, length_penalty=2.0, num_beams=4): inputs = self.tokenizer([text], max_length=1024, return_tensors="pt", truncation=True) inputs = inputs.to(self.device) summary_ids = self.model.generate( inputs["input_ids"], num_beams=num_beams, max_length=max_length, min_length=min_length, length_penalty=length_penalty ) summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary def main_summarizer(): # Example usage summarizer = AdvancedSummarizer() text = """Your text here""" # Replace with your actual text summary = summarizer.summarize(text) print("Summary:") print(summary) class AdvancedTextGenerator: def __init__(self, model_name="gpt2-medium"): try: self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {self.device}") self.model = GPT2LMHeadModel.from_pretrained(model_name).to(self.device) self.tokenizer = GPT2Tokenizer.from_pretrained(model_name) except Exception as e: print(f"Error initializing the model: {e}") sys.exit(1) def generate_text(self, prompt, max_length=100, num_return_sequences=1, temperature=1.0, top_k=50, top_p=0.95, repetition_penalty=1.0): try: input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device) output_sequences = self.model.generate( input_ids=input_ids, max_length=max_length + len(input_ids[0]), temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, num_return_sequences=num_return_sequences, ) generated_sequences = [] for generated_sequence in output_sequences: text = self.tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) total_sequence = text[len(self.tokenizer.decode(input_ids[0], clean_up_tokenization_spaces=True)):] generated_sequences.append(total_sequence) return generated_sequences except Exception as e: return [f"Error during text generation: {e}"] def main_generator(): parser = argparse.ArgumentParser(description="Advanced Text Generator") parser.add_argument("--prompt", type=str, help="Starting prompt for text generation") parser.add_argument("--max_length", type=int, default=100, help="Maximum length of generated text") parser.add_argument("--num_sequences", type=int, default=1, help="Number of sequences to generate") parser.add_argument("--temperature", type=float, default=1.0, help="Temperature for sampling") parser.add_argument("--top_k", type=int, default=50, help="Top-k sampling parameter") parser.add_argument("--top_p", type=float, default=0.95, help="Top-p sampling parameter") parser.add_argument("--repetition_penalty", type=float, default=1.0, help="Repetition penalty") args = parser.parse_args() generator = AdvancedTextGenerator() if args.prompt: prompt = args.prompt else: print("Please enter the prompt for text generation:") prompt = input().strip() generated_texts = generator.generate_text( prompt, max_length=args.max_length, num_return_sequences=args.num_sequences, temperature=args.temperature, top_k=args.top_k, top_p=args.top_p, repetition_penalty=args.repetition_penalty ) print("\nGenerated Text(s):") for i, text in enumerate(generated_texts, 1): print(f"\n--- Sequence {i} ---") print(text) if __name__ == "__main__": main_summarizer() # Call the summarizer main function main_generator() # Call the text generator main function