--- language: - zh - en pipeline_tag: text-generation license: other license_name: llama3 license_link: LICENSE tags: - llama3 - chinese - meta --- # llama-3-8b-instruct-262k-chinese-lora llama-3-8b-instruct-262k-chinese基于[Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k),使用ORPO方法,在中英文偏好数据集[shibing624/DPO-En-Zh-20k-Preference](https://huggingface.co/datasets/shibing624/DPO-En-Zh-20k-Preference) 上微调得到的对话模型。 模型的部署、训练等方法详见MedicalGPT的GitHub仓库:[https://github.com/shibing624/MedicalGPT](https://github.com/shibing624/MedicalGPT) ## Relate models - 完整模型权重:https://huggingface.co/shibing624/llama-3-8b-instruct-262k-chinese - lora权重:https://huggingface.co/shibing624/llama-3-8b-instruct-262k-chinese-lora ## Features 模型优势: 1. 支持超长context length 262k token,适合RAG 2. 支持中英文 3. 支持多轮对话,代码编码、推理能力强,英文知识充分 4. 模型推理需要显存: Quantization | Peak Usage for Encoding 2048 Tokens | Peak Usage for Generating 8192 Tokens -- | -- | -- FP16/BF16 | 17.66GB | 22.58GB Int4 | 8.21GB | 13.62GB 缺点: 1. model size只有8B,知识类问答幻觉明显 2. 中文知识欠缺,容易幻觉,特别是中文古文知识,属于llama类模型通病 ## 如何使用 ```python import transformers import torch model_id = "shibing624/llama-3-8b-instruct-262k-chinese" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.float16}, device="cuda", ) messages = [{"role": "system", "content": ""}] messages.append({"role": "user", "content": "介绍一下机器学习"}) prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=512, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9 ) content = outputs[0]["generated_text"][len(prompt):] print(content) ``` result: ```shell 机器学习(Machine Learning)是一种基于计算机算法的自动数据分析技术,用于从数据中学习并预测未来的结果。它是人工智能(AI)和数据挖掘(Data Mining)的子领域,旨在通过训练和调整算法来发现数据中的模式、关系和规律。 机器学习算法可以分为监督学习、无监督学习和半监督学习三类: 1. 监督学习(Supervised Learning):在这种类型的学习中,算法被提供带有标签的数据集,用于训练。算法学习如何将输入数据映射到输出数据,并在新数据上进行预测。常见的监督学习算法包括逻辑回归、决策树、支持向量机(SVM)、随机森林和神经网络。 2. 无监督学习(Unsupervised Learning):在这种类型的学习中,算法没有标签数据。算法学习数据中的模式、结构和关系,并可能发现新的数据集群或特征。常见的无监督学习算法包括聚类、主成分分析(PCA)、独立成分分析(ICA)和高维度数据降维。 3. 半监督学习(Semi-supervised Learning):在这种类型的学习中,算法被提供部分带有标签的数据集。算法学习如何将输入数据映射到输出数据,并在新数据上进行预测。半监督学习算法结合了监督学习和无监督学习的优点,常见的半监督学习算法包括自我标注(Self-Labeling)和基于图的半监督学习(Graph-based Semi-supervised Learning)。 机器学习的应用广泛,包括自然语言处理、计算机视觉、推荐系统、人工智能和自动驾驶等领域。它的优势包括: 1. 自动化:机器学习算法可以自动从数据中发现模式和关系,无需人为干预。 2. 高效性:机器学习算法可以处理大量数据,并且可以在不需要人为干预的情况下进行预测。 3. 适应性:机器学习算法可以根据数据集的变化和更新进行调整。 4. 精准性:机器学习算法可以通过训练和测试来提高预测的准确性。 ``` ## train detail train loss: eval loss: # About Llama-3-8B-Instruct-262k Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. To learn more or collaborate on a custom model. This model extends LLama-3 8B's context length from 8k to -> 160K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training (< 200M tokens) by appropriately adjusting RoPE theta. **Approach:** - [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base - NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by a new data-driven RoPE theta optimization technique - Progressive training on increasing context lengths similar to the [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below) **Infra:** We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 262144 tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster. **Data:** For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B). **Progressive Training Details:** | Parameter | 65K | 262K | |-----------------------------|----------------|------------| | Initialize From | LLaMA-3-8B-Inst| 65K | | Sequence Length | 2^16 | 2^18 | | RoPE theta | 15.3 M | 207.1 M | | Batch Size (Tokens / Step) | 2.097 M | 4.192 M | | Steps | 30 | 24 | | Total Tokens | 63 M | 101 M | | Learning Rate | 2.00E-05 | 2.00E-05 | | # GPUs | 32 | 32 | | GPU Type | NVIDIA L40S | NVIDIA L40S|