--- library_name: transformers license: apache-2.0 language: - en base_model: - shi-labs/pretrain_dsg_OLA-VLM-CLIP-ConvNeXT-Phi3-4k-mini pipeline_tag: image-text-to-text --- # OLA-VLM-CLIP-ConvNeXT-Phi3-4k-mini OLA-VLM distills target visual information into the intermediate representations of the LLM from a set of target encoders. It adopts a predictive embedding optimization approach at selected LLM layers during training to minimize the embedding losses along with the next token prediction (NTP) objective, resulting in a vision-centric approach to training the Multimodal Large Language Model. - **GitHub Repo:** [https://github.com/SHI-Labs/OLA-VLM](https://github.com/SHI-Labs/OLA-VLM) - **Project Page:** [https://praeclarumjj3.github.io/ola_vlm/](https://praeclarumjj3.github.io/ola_vlm/)
## Get Started with the Model Clone the repository and follow the [setup instructions](https://github.com/SHI-Labs/OLA-VLM#installation-instructions): ```bash git lfs install git clone https://github.com/SHI-Labs/OLA-VLM cd OLA-VLM ``` After setup, you can use OLA-VLM with the following code: ```python import gradio as gr import os import torch import numpy as np from ola_vlm.constants import DEFAULT_IMAGE_TOKEN from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from ola_vlm.conversation import conv_templates, SeparatorStyle from ola_vlm.model.builder import load_pretrained_model from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images model_path = "shi-labs/OLA-VLM-CLIP-ConvNeXT-Phi3-4k-mini" conv_mode = "llava_phi_3" image_path = "/path/to/OLA-VLM/assets/pb.jpg" input_prompt = "Describe this image." # load model model_name = get_model_name_from_path(model_path) tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name) # prepare prompt input_prompt = DEFAULT_IMAGE_TOKEN + '\n' + input_prompt conv = conv_templates[conv_mode].copy() conv.append_message(conv.roles[0], input_prompt) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() # load and preprocess image image = Image.open(image_path).convert('RGB') image_tensor = process_images([image], image_processor, model.config)[0] input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt') input_ids = input_ids.to(device='cuda', non_blocking=True) image_tensor = image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True) # run inference with torch.inference_mode(): output_ids = model.generate( input_ids.unsqueeze(0), images=image_tensor.unsqueeze(0), image_sizes=[image.size], do_sample=True, temperature=0.2, top_p=0.5, num_beams=1, max_new_tokens=256, use_cache=True) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(f"Image:{image_path} \nPrompt:{input_prompt} \nOutput:{outputs}") ``` For more information, please refer to [https://github.com/SHI-Labs/OLA-VLM](https://github.com/SHI-Labs/OLA-VLM). ## Citation If you found our work useful in your research, please consider starring ⭐ us on [GitHub](https://github.com/SHI-Labs/OLA-VLM) and citing 📚 us in your research! ``` @article{jain2024ola_vlm, title={{OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation}}, author={Jitesh Jain and Zhengyuan Yang and Humphrey Shi and Jianfeng Gao and Jianwei Yang}, journal={arXiv}, year={2024} } ```