--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - f1 model-index: - name: all-observation-type results: [] --- # all-observation-type This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the all-multi-class dataset. It achieves the following results on the evaluation set: - Loss: 0.0077 - F1: 0.0913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0726 | 1.1628 | 100 | 0.0660 | 0.0 | | 0.0264 | 2.3256 | 200 | 0.0247 | 0.0 | | 0.0161 | 3.4884 | 300 | 0.0165 | 0.0 | | 0.0133 | 4.6512 | 400 | 0.0135 | 0.0 | | 0.0124 | 5.8140 | 500 | 0.0120 | 0.0 | | 0.011 | 6.9767 | 600 | 0.0112 | 0.0 | | 0.0114 | 8.1395 | 700 | 0.0107 | 0.0 | | 0.0109 | 9.3023 | 800 | 0.0103 | 0.0 | | 0.0096 | 10.4651 | 900 | 0.0102 | 0.0 | | 0.0099 | 11.6279 | 1000 | 0.0098 | 0.0 | | 0.0089 | 12.7907 | 1100 | 0.0094 | 0.0 | | 0.0091 | 13.9535 | 1200 | 0.0093 | 0.0 | | 0.0081 | 15.1163 | 1300 | 0.0089 | 0.0 | | 0.0073 | 16.2791 | 1400 | 0.0089 | 0.0 | | 0.0071 | 17.4419 | 1500 | 0.0085 | 0.0 | | 0.0068 | 18.6047 | 1600 | 0.0082 | 0.0183 | | 0.0064 | 19.7674 | 1700 | 0.0082 | 0.0365 | | 0.0061 | 20.9302 | 1800 | 0.0086 | 0.0091 | | 0.0054 | 22.0930 | 1900 | 0.0082 | 0.0594 | | 0.0051 | 23.2558 | 2000 | 0.0080 | 0.0502 | | 0.0048 | 24.4186 | 2100 | 0.0079 | 0.0639 | | 0.0045 | 25.5814 | 2200 | 0.0080 | 0.0639 | | 0.0036 | 26.7442 | 2300 | 0.0079 | 0.1027 | | 0.0038 | 27.9070 | 2400 | 0.0079 | 0.1027 | | 0.0032 | 29.0698 | 2500 | 0.0077 | 0.0913 | | 0.004 | 30.2326 | 2600 | 0.0079 | 0.1027 | | 0.003 | 31.3953 | 2700 | 0.0081 | 0.0936 | | 0.0029 | 32.5581 | 2800 | 0.0080 | 0.0890 | | 0.0033 | 33.7209 | 2900 | 0.0081 | 0.0845 | | 0.0029 | 34.8837 | 3000 | 0.0081 | 0.1256 | | 0.0025 | 36.0465 | 3100 | 0.0081 | 0.1347 | | 0.0027 | 37.2093 | 3200 | 0.0081 | 0.1324 | | 0.0028 | 38.3721 | 3300 | 0.0082 | 0.1324 | | 0.0023 | 39.5349 | 3400 | 0.0082 | 0.1324 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1