--- license: apache-2.0 tags: - generated_from_trainer datasets: - scitldr metrics: - rouge base_model: t5-small model-index: - name: paper-summary results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: scitldr type: scitldr config: Abstract split: train args: Abstract metrics: - type: rouge value: 0.3484 name: Rouge1 --- # paper-summary This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.8631 - Rouge1: 0.3484 - Rouge2: 0.1596 - Rougel: 0.2971 - Rougelsum: 0.3047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.0545 | 1.0 | 63 | 2.9939 | 0.3387 | 0.1538 | 0.2887 | 0.2957 | | 2.7871 | 2.0 | 126 | 2.9360 | 0.3448 | 0.1577 | 0.2947 | 0.3019 | | 2.7188 | 3.0 | 189 | 2.8977 | 0.3477 | 0.1585 | 0.2967 | 0.3035 | | 2.6493 | 4.0 | 252 | 2.8837 | 0.3488 | 0.1597 | 0.2973 | 0.3046 | | 2.6207 | 5.0 | 315 | 2.8690 | 0.3472 | 0.1566 | 0.2958 | 0.3033 | | 2.5893 | 6.0 | 378 | 2.8668 | 0.3493 | 0.1592 | 0.2972 | 0.305 | | 2.5494 | 7.0 | 441 | 2.8657 | 0.3486 | 0.1595 | 0.2976 | 0.3053 | | 2.5554 | 8.0 | 504 | 2.8631 | 0.3484 | 0.1596 | 0.2971 | 0.3047 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1