--- license: cc-by-4.0 language: - en datasets: - CoNLL2003/AIDA - Wikipedia - sshavara/AIDA_testc tags: - SpEL - Entity Linking - Structured Prediction widget: - text: "Leicestershire beat Somerset by an innings and 39 runs in two days." --- ## SpEL (Structured prediction for Entity Linking) SpEL model finetuned on English Wikipedia as well as the training portion of CoNLL2003/AIDA. It is introduced in the paper [SPEL: Structured Prediction for Entity Linking (EMNLP 2023)](https://arxiv.org/abs/2310.14684). The code and data are available in [this repository](https://github.com/shavarani/SpEL). ### Usage The following snippet demonstrates a quick way that SpEL can be used to generate subword-level, word-level, and phrase-level annotations for a sentence. ```python # download SpEL from https://github.com/shavarani/SpEL from transformers import AutoTokenizer from spel.model import SpELAnnotator from spel.configuration import device from spel.utils import get_subword_to_word_mapping from spel.span_annotation import WordAnnotation, PhraseAnnotation finetuned_after_step = 4 sentence = "Grace Kelly by Mika reached the top of the UK Singles Chart in 2007." tokenizer = AutoTokenizer.from_pretrained("roberta-base") # ############################################# LOAD SpEL ############################################################# spel = SpELAnnotator() spel.init_model_from_scratch(device=device) if finetuned_after_step == 3: spel.shrink_classification_head_to_aida(device) spel.load_checkpoint(None, device=device, load_from_torch_hub=True, finetuned_after_step=finetuned_after_step) # ############################################# RUN SpEL ############################################################## inputs = tokenizer(sentence, return_tensors="pt") token_offsets = list(zip(inputs.encodings[0].tokens,inputs.encodings[0].offsets)) subword_annotations = spel.annotate_subword_ids(inputs.input_ids, k_for_top_k_to_keep=10, token_offsets=token_offsets) # #################################### CREATE WORD-LEVEL ANNOTATIONS ################################################## tokens_offsets = token_offsets[1:-1] subword_annotations = subword_annotations[1:] word_annotations = [WordAnnotation(subword_annotations[m[0]:m[1]], tokens_offsets[m[0]:m[1]]) for m in get_subword_to_word_mapping(inputs.tokens(), sentence)] # ################################## CREATE PHRASE-LEVEL ANNOTATIONS ################################################## phrase_annotations = [] for w in word_annotations: if not w.annotations: continue if phrase_annotations and phrase_annotations[-1].resolved_annotation == w.resolved_annotation: phrase_annotations[-1].add(w) else: phrase_annotations.append(PhraseAnnotation(w)) ``` ## Evaluation Results Entity Linking evaluation results of *SpEL* compared to that of the literature over AIDA test sets: | Approach | EL Micro-F1
test-a | EL Micro-F1
test-b | #params
on GPU | speed
sec/doc | |-----------------------------------------------------------------|:----------------------:|:----------------------:|:----------------------------------------:|:-----------------:| | Hoffart et al. (2011) | 72.4 | 72.8 | - | - | | Kolitsas et al. (2018) | 89.4 | 82.4 | 330.7M | 0.097 | | Broscheit (2019) | 86.0 | 79.3 | 495.1M | 0.613 | | Peters et al. (2019) | 82.1 | 73.1 | - | - | | Martins et al. (2019) | 85.2 | 81.9 | - | - | | van Hulst et al. (2020) | 83.3 | 82.4 | 19.0M | 0.337 | | FĂ©vry et al. (2020) | 79.7 | 76.7 | - | - | | Poerner et al. (2020) | 90.8 | 85.0 | 131.1M | - | | Kannan Ravi et al. (2021) | - | 83.1 | - | - | | De Cao et al. (2021b) | - | 83.7 | 406.3M | 40.969 | | De Cao et al. (2021a)
(no mention-specific candidate set) | 61.9 | 49.4 | 124.8M | 0.268 | | De Cao et al. (2021a)
(using PPRforNED candidate set) | 90.1 | 85.5 | 124.8M | 0.194 | | Mrini et al. (2022) | - | 85.7 | (train) 811.5M
(test) 406.2M | - | | Zhang et al. (2022) | - | 85.8 | 1004.3M | - | | Feng et al. (2022) | - | 86.3 | 157.3M | - | |
|
|
|
|
| | **SpEL-base** (no mention-specific candidate set) | 91.3 | 85.5 | 128.9M | 0.084 | | **SpEL-base** (KB+Yago candidate set) | 90.6 | 85.7 | 128.9M | 0.158 | | **SpEL-base** (PPRforNED candidate set)
(context-agnostic) | 91.7 | 86.8 | 128.9M | 0.153 | | **SpEL-base** (PPRforNED candidate set)
(context-aware) | 92.7 | 88.1 | 128.9M | 0.156 | | **SpEL-large** (no mention-specific candidate set) | 91.6 | 85.8 | 361.1M | 0.273 | | **SpEL-large** (KB+Yago candidate set) | 90.8 | 85.7 | 361.1M | 0.267 | | **SpEL-large** (PPRforNED candidate set)
(context-agnostic) | 92.0 | 87.3 | 361.1M | 0.268 | | **SpEL-large** (PPRforNED candidate set)
(context-aware) | 92.9 | 88.6 | 361.1M | 0.267 | ---- ## Citation If you use SpEL finetuned models or data, please cite our paper: ``` @inproceedings{shavarani2023spel, title={Sp{EL}: Structured Prediction for Entity Linking}, author={Shavarani, Hassan S. and Sarkar, Anoop}, booktitle={The 2023 Conference on Empirical Methods in Natural Language Processing}, year={2023}, url={https://arxiv.org/abs/2310.14684} } ```