--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: vit-weight-decay-1e-4 results: [] --- # vit-weight-decay-1e-4 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the skin-cancer dataset. It achieves the following results on the evaluation set: - Loss: 0.5277 - Accuracy: 0.8263 - Precision: 0.8467 - Recall: 0.8263 - F1: 0.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1733 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.7856 | 1.0 | 321 | 0.9535 | 0.6869 | 0.6412 | 0.6869 | 0.6229 | | 1.1412 | 2.0 | 642 | 0.6928 | 0.7424 | 0.7440 | 0.7424 | 0.7311 | | 1.0297 | 3.0 | 963 | 0.6863 | 0.7490 | 0.7362 | 0.7490 | 0.7057 | | 0.9571 | 4.0 | 1284 | 0.5587 | 0.7694 | 0.7901 | 0.7694 | 0.7736 | | 0.9346 | 5.0 | 1605 | 0.5654 | 0.7940 | 0.8058 | 0.7940 | 0.7919 | | 0.9802 | 6.0 | 1926 | 0.6318 | 0.7746 | 0.7928 | 0.7746 | 0.7794 | | 0.8352 | 7.0 | 2247 | 0.6611 | 0.7295 | 0.8145 | 0.7295 | 0.7498 | | 0.7621 | 8.0 | 2568 | 0.5766 | 0.7666 | 0.8162 | 0.7666 | 0.7781 | | 0.7352 | 9.0 | 2889 | 0.5369 | 0.7996 | 0.8269 | 0.7996 | 0.8079 | | 0.6919 | 10.0 | 3210 | 0.5500 | 0.7753 | 0.8270 | 0.7753 | 0.7900 | | 0.6105 | 11.0 | 3531 | 0.5562 | 0.8062 | 0.8310 | 0.8062 | 0.8129 | | 0.5808 | 12.0 | 3852 | 0.6608 | 0.7708 | 0.8278 | 0.7708 | 0.7871 | | 0.4534 | 13.0 | 4173 | 0.5684 | 0.8301 | 0.8483 | 0.8301 | 0.8291 | | 0.4519 | 14.0 | 4494 | 0.5928 | 0.8121 | 0.8388 | 0.8121 | 0.8201 | | 0.3998 | 15.0 | 4815 | 0.5277 | 0.8263 | 0.8467 | 0.8263 | 0.8324 | | 0.3307 | 16.0 | 5136 | 0.5944 | 0.8266 | 0.8458 | 0.8266 | 0.8330 | | 0.2899 | 17.0 | 5457 | 0.5387 | 0.8526 | 0.8546 | 0.8526 | 0.8524 | | 0.2466 | 18.0 | 5778 | 0.5559 | 0.8495 | 0.8541 | 0.8495 | 0.8506 | | 0.201 | 19.0 | 6099 | 0.6360 | 0.8336 | 0.8671 | 0.8336 | 0.8427 | | 0.2163 | 20.0 | 6420 | 0.6009 | 0.8599 | 0.8575 | 0.8599 | 0.8581 | | 0.1614 | 21.0 | 6741 | 0.5804 | 0.8689 | 0.8648 | 0.8689 | 0.8630 | | 0.1106 | 22.0 | 7062 | 0.5798 | 0.8689 | 0.8661 | 0.8689 | 0.8670 | | 0.1243 | 23.0 | 7383 | 0.6228 | 0.8703 | 0.8686 | 0.8703 | 0.8672 | | 0.1251 | 24.0 | 7704 | 0.5987 | 0.8727 | 0.8695 | 0.8727 | 0.8698 | | 0.1038 | 25.0 | 8025 | 0.5806 | 0.8769 | 0.8756 | 0.8769 | 0.8753 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2