--- license: apache-2.0 tags: - generated_from_trainer base_model: codeparrot/codeparrot-small model-index: - name: codeparrot-small-custom-functions-dataset-python results: [] --- # codeparrot-small-custom-functions-dataset-python This model is a fine-tuned version of [codeparrot/codeparrot-small](https://huggingface.co/codeparrot/codeparrot-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.216 | 0.12 | 1 | 1.0747 | | 1.051 | 0.25 | 2 | 1.0005 | | 0.9855 | 0.38 | 3 | 0.9462 | | 0.9259 | 0.5 | 4 | 0.9042 | | 0.9236 | 0.62 | 5 | 0.8675 | | 0.8644 | 0.75 | 6 | 0.8331 | | 0.8148 | 0.88 | 7 | 0.8030 | | 0.7554 | 1.0 | 8 | 0.7800 | | 0.7815 | 1.12 | 9 | 0.7600 | | 0.784 | 1.25 | 10 | 0.7440 | | 0.635 | 1.38 | 11 | 0.7309 | | 0.6666 | 1.5 | 12 | 0.7170 | | 0.7676 | 1.62 | 13 | 0.6993 | | 0.6608 | 1.75 | 14 | 0.6835 | | 0.6885 | 1.88 | 15 | 0.6696 | | 0.69 | 2.0 | 16 | 0.6582 | | 0.6343 | 2.12 | 17 | 0.6463 | | 0.709 | 2.25 | 18 | 0.6324 | | 0.5446 | 2.38 | 19 | 0.6206 | | 0.5298 | 2.5 | 20 | 0.6102 | | 0.6478 | 2.62 | 21 | 0.6016 | | 0.546 | 2.75 | 22 | 0.5941 | | 0.6297 | 2.88 | 23 | 0.5871 | | 0.4518 | 3.0 | 24 | 0.5814 | | 0.566 | 3.12 | 25 | 0.5769 | | 0.6285 | 3.25 | 26 | 0.5702 | | 0.5938 | 3.38 | 27 | 0.5631 | | 0.514 | 3.5 | 28 | 0.5568 | | 0.5113 | 3.62 | 29 | 0.5504 | | 0.512 | 3.75 | 30 | 0.5451 | | 0.4392 | 3.88 | 31 | 0.5407 | | 0.5097 | 4.0 | 32 | 0.5370 | | 0.4866 | 4.12 | 33 | 0.5326 | | 0.5028 | 4.25 | 34 | 0.5285 | | 0.5438 | 4.38 | 35 | 0.5228 | | 0.5424 | 4.5 | 36 | 0.5166 | | 0.5156 | 4.62 | 37 | 0.5108 | | 0.4335 | 4.75 | 38 | 0.5056 | | 0.4298 | 4.88 | 39 | 0.5013 | | 0.5268 | 5.0 | 40 | 0.4978 | | 0.4714 | 5.12 | 41 | 0.4938 | | 0.4659 | 5.25 | 42 | 0.4907 | | 0.4573 | 5.38 | 43 | 0.4874 | | 0.4689 | 5.5 | 44 | 0.4847 | | 0.4346 | 5.62 | 45 | 0.4824 | | 0.4563 | 5.75 | 46 | 0.4794 | | 0.4505 | 5.88 | 47 | 0.4761 | | 0.7359 | 6.0 | 48 | 0.4732 | | 0.4704 | 6.12 | 49 | 0.4706 | | 0.4223 | 6.25 | 50 | 0.4685 | | 0.4789 | 6.38 | 51 | 0.4651 | | 0.4402 | 6.5 | 52 | 0.4624 | | 0.4454 | 6.62 | 53 | 0.4597 | | 0.4496 | 6.75 | 54 | 0.4566 | | 0.3942 | 6.88 | 55 | 0.4539 | | 0.2915 | 7.0 | 56 | 0.4515 | | 0.3926 | 7.12 | 57 | 0.4496 | | 0.4102 | 7.25 | 58 | 0.4474 | | 0.4235 | 7.38 | 59 | 0.4456 | | 0.4841 | 7.5 | 60 | 0.4441 | | 0.3914 | 7.62 | 61 | 0.4423 | | 0.4417 | 7.75 | 62 | 0.4404 | | 0.4212 | 7.88 | 63 | 0.4384 | | 0.4343 | 8.0 | 64 | 0.4369 | | 0.4159 | 8.12 | 65 | 0.4355 | | 0.4193 | 8.25 | 66 | 0.4343 | | 0.4393 | 8.38 | 67 | 0.4333 | | 0.4507 | 8.5 | 68 | 0.4319 | | 0.3855 | 8.62 | 69 | 0.4305 | | 0.4064 | 8.75 | 70 | 0.4293 | | 0.4044 | 8.88 | 71 | 0.4283 | | 0.2957 | 9.0 | 72 | 0.4275 | | 0.4442 | 9.12 | 73 | 0.4266 | | 0.4142 | 9.25 | 74 | 0.4260 | | 0.4022 | 9.38 | 75 | 0.4253 | | 0.4161 | 9.5 | 76 | 0.4248 | | 0.3828 | 9.62 | 77 | 0.4244 | | 0.384 | 9.75 | 78 | 0.4241 | | 0.3985 | 9.88 | 79 | 0.4239 | | 0.4912 | 10.0 | 80 | 0.4238 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3