{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d29a4fa8880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 212992, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715712292823950985, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGhNDz8xn0e9mkmWuzNAybngzYi+y3DQuwAAgD8AAIA/zbfoPbaulz9o+pA++QjkvmoLXz72Tj0+AAAAAAAAAABauVg+pHYlu0TfEzxAsQ+9hHaEvHvx7b0AAIA/AACAP1OYKD5sgLa7OlBwulIpF7m9vx29jdSUOQAAgD8AAIA/A3r2PtdQPb19O7O7TwMoOORGPz2T2j46AACAPwAAgD9zA5U9w/0ouqm0yDlMIYU8Q+77uk/3wTkAAIA/AACAP5oegLwUOK66Fjx9u//UwjgtntU6aB0gOgAAgD8AAIA/minLOwjV2z7Ox6Y+l13cvlEAsjy6JRk+AAAAAAAAAABn8wK/ZOADPh9wtTvsLUW34bYVuffuqLQAAIA/AAAAAPMYxj3s0bG30tSkOysO5TSbFqC63Vn7MwAAgD8AAIA/zdhDPOHShLoPfAO86s+fNxP6I7vbgg23AACAPwAAgD9qQZ0+cFilPnVBPz6d3lq+NUX9vf3w+jkAAAAAAAAAAIqczD4P8RG8G+qCu7v+2jiZ5NW8fc0hOAAAgD8AAIA/zc3uvCnEH7qKTBi8QeScvadLI7xNYYq+AAAAAAAAgD/tHQ0/+jXPvaKEjDv3Wbm5Bm/5vbpqCboAAIA/AACAP02gqL1Irog76uqQOwybC7sByBk8i1NsPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVFQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDY6rmyPdVOMAWyUS46MAXSUR0CW5/D28IzFdX2UKGgGR8AqoOWBz3h5aAdLV2gIR0CW6ZcsDnvEdX2UKGgGR0A2AfVqesgdaAdLfWgIR0CW7ngFotcwdX2UKGgGR0AsRIp6QeV+aAdLjWgIR0CW+dHOKO1fdX2UKGgGR0BQdHv2GqPwaAdN6ANoCEdAlv2v6wdKd3V9lChoBkfANFO4kNWluWgHTegDaAhHQJcBHt4RmK91fZQoaAZHQELdRCQcPvtoB03oA2gIR0CXBaQyhzvJdX2UKGgGR0BdhsV1wHZ9aAdN6ANoCEdAlwaWq1gH/3V9lChoBkfAPtxOk+HJtGgHTegDaAhHQJcHwLRa5gB1fZQoaAZHQFGWmvnr6cloB03oA2gIR0CXCgtNi6QOdX2UKGgGR0BAKxMWXTmXaAdLiGgIR0CXC088s+V1dX2UKGgGR0BWbeQIUrTZaAdN6ANoCEdAlw6LVJ+UhXV9lChoBkfAO/QdwNsnA2gHS4JoCEdAlxBNzCDVY3V9lChoBkfANjGIoE0SAmgHS+ZoCEdAlxb6ya/h2nV9lChoBkdAQRL9If8uSWgHS5VoCEdAlx7fFrEcbXV9lChoBkdAUvCz6ab4J2gHTegDaAhHQJcgYSteUpx1fZQoaAZHQDLo1pCa7VdoB03oA2gIR0CXOaCkoF3ZdX2UKGgGR0Afdb5dnkDIaAdLsWgIR0CXQRkGRmsedX2UKGgGR0BdfDKxLTQWaAdN6ANoCEdAl0HgTqSowXV9lChoBkdAV1idxyXD32gHTegDaAhHQJdCIUUO/cp1fZQoaAZHQFBMVymygPFoB03oA2gIR0CXReGfwqiHdX2UKGgGR8BgB2xGDtgKaAdNuwNoCEdAl0mlbaAWi3V9lChoBkdAF/cDKYAsCmgHTegDaAhHQJdKFvxYq5N1fZQoaAZHQEKbtNzr/sFoB03oA2gIR0CXS41WKdhBdX2UKGgGR8A2M+rlvIfbaAdLt2gIR0CXUErGipNsdX2UKGgGR8BhPP2Xb/OuaAdNHwFoCEdAl1y3fZVXFXV9lChoBkfARosHKOktVmgHTegDaAhHQJddlrylN111fZQoaAZHQFpU12JSBLBoB03oA2gIR0CXYMdPci4bdX2UKGgGR0BLGkZaV2RraAdN6ANoCEdAl2jvY4ACGXV9lChoBkfAPQPZIxxku2gHTegDaAhHQJds616Vt411fZQoaAZHQFjAZTyauwJoB03oA2gIR0CXbndpqREGdX2UKGgGR0BErDAi3XqaaAdN6ANoCEdAl3H63Zwn6XV9lChoBkdAXCtV7x/d7GgHTegDaAhHQJd5YYxcmjV1fZQoaAZHwFfgrqdH2AZoB03oA2gIR0CXgVxbB42TdX2UKGgGR8Bnb+p6yB07aAdNcAFoCEdAl5taUqx1PnV9lChoBkdAMgUdV/+bVmgHS5hoCEdAl5uJb+tKZnV9lChoBkdAISCFbmlqJ2gHTegDaAhHQJeeDXsgMc91fZQoaAZHQEzGpkwvg3toB03oA2gIR0CXplG0/nnudX2UKGgGR0BUM1VxS5y3aAdN6ANoCEdAl6aOMZP2wnV9lChoBkdALlepGWldkmgHS5RoCEdAl6eUyYXwb3V9lChoBkdAURustCiRGWgHS3hoCEdAl6e6oVEeAHV9lChoBkdAM4kVN5+pfmgHS7BoCEdAl6llaB7NS3V9lChoBkfAY3UZG8VYZGgHTe8BaAhHQJepdzhgmZ51fZQoaAZHQF2WekHlfZ5oB03oA2gIR0CXrM4FzMibdX2UKGgGR0BWdZrULDyfaAdN6ANoCEdAl60knG828HV9lChoBkdAVBM9V3ljmWgHTegDaAhHQJeuMCU5dW11fZQoaAZHQC+pxLkCFK1oB0ukaAhHQJexPpIMBp51fZQoaAZHQD1hFd9lVcVoB03oA2gIR0CXsgMBZIQOdX2UKGgGR0BI87BoEjgRaAdLtGgIR0CXs93W4EwGdX2UKGgGR0BEEyRB/qgRaAdLo2gIR0CXtF4Oc2BKdX2UKGgGR0BQ3VvQ4S6EaAdLyWgIR0CXtTgr6LwXdX2UKGgGR8A2ns54nndPaAdL3WgIR0CXtapzLfUGdX2UKGgGR8AiWxiXpnpTaAdLeGgIR0CXtpJFb3XadX2UKGgGR8AevNmlImPYaAdLwGgIR0CXtsZ7ojfOdX2UKGgGR0A2hmFrVOKwaAdLj2gIR0CXtyRceKbbdX2UKGgGR0A288OkLx7RaAdLaGgIR0CXvJxvvSc9dX2UKGgGR0BUh2WyC4BnaAdN6ANoCEdAl76VIEr5I3V9lChoBkdAVgKKekHlfmgHTegDaAhHQJe/L+ee4Cp1fZQoaAZHQDDy7Xg9/z9oB0u3aAhHQJfAld8iOed1fZQoaAZHQGEVmICU5dZoB03oA2gIR0CXwVrIYFaCdX2UKGgGR7/7bzf779AHaAdLvmgIR0CXwgajN6gNdX2UKGgGR8Anc2P1ct5EaAdLtmgIR0CXwmXyAhB7dX2UKGgGR0AsGsq8UVSGaAdLlWgIR0CXxE3AmAskdX2UKGgGR0Az0+ERJ2+xaAdLbGgIR0CXxFmHgxagdX2UKGgGR8AxsIC2c8T0aAdLf2gIR0CXxL08/2TQdX2UKGgGR8BBdlHrhR64aAdLd2gIR0CXxm0ALiMpdX2UKGgGR0BYwSksSTQmaAdN6ANoCEdAl8opJK8L8nV9lChoBkfAKkMSK3uuzWgHS6toCEdAl8sPqcEvCnV9lChoBkdAWoIoa1kUbmgHTegDaAhHQJfMpfTkQwt1fZQoaAZHQC9f6ZYxL01oB0unaAhHQJfNJLf1pTN1fZQoaAZHwD0t5/smfGxoB0uraAhHQJfNYt9QXRB1fZQoaAZHQCteMju8brFoB0ucaAhHQJfOnhddE9d1fZQoaAZHQDre2LHdXT5oB0ulaAhHQJfSrwd8zAN1fZQoaAZHQEVRXOnl4khoB0uWaAhHQJfS22OQyRB1fZQoaAZHQFUPJvHcUM5oB03oA2gIR0CX1jYiPhhqdX2UKGgGR8Bwqdpj+aScaAdNkAFoCEdAl9Y4AbQ1JnV9lChoBkdAQQBE0BOpKmgHS8doCEdAl9gu/tY0VXV9lChoBkfAXsR/mT1TSGgHS9toCEdAl/jgGGEf1nV9lChoBkdAM+S+6Ae7tmgHS8VoCEdAl/yLXpW3jXV9lChoBkdAQLYbjtG/e2gHS9xoCEdAmAD190A93nV9lChoBkdAVQztnf2saWgHTegDaAhHQJgEI5ksjFB1fZQoaAZHQFAkw9JSR8toB03oA2gIR0CYCUEtuk1udX2UKGgGR0BaFgqAjIJaaAdN6ANoCEdAmAn9lqagEnV9lChoBkdAOY+mBOHnEGgHS91oCEdAmApAmE4//3V9lChoBkdAUNppQDV6NWgHTegDaAhHQJgNJ/6O5rh1fZQoaAZHQF2f55JK8L9oB03oA2gIR0CYDf3x4IKMdX2UKGgGR0BdXmTTvy9VaAdN6ANoCEdAmA4579hqkHV9lChoBkdASM6a/h2nsWgHS5hoCEdAmA5sCYCyQnV9lChoBkdAKwAOBlMAWGgHS5BoCEdAmBGwQpWmxnV9lChoBkdAJyAwwj+rEWgHS4hoCEdAmBIAzk6tDHV9lChoBkfAPxNdiUgSvmgHTegDaAhHQJgXnc+JP691fZQoaAZHQFSF4N7SiM5oB03oA2gIR0CYGzTmnwXqdX2UKGgGR0A/Akl/pdKNaAdLoWgIR0CYG4ztTkyUdX2UKGgGR0BZyEbgjyFxaAdN6ANoCEdAmCe4MF2V3XV9lChoBkdAWklTUAksz2gHTegDaAhHQJgojklu3tt1fZQoaAZHQDesGyHEdeZoB03oA2gIR0CYK2OeJ53UdX2UKGgGR0BKwv4/NZ/1aAdN6ANoCEdAmDCNelbeM3V9lChoBkdAQoUXBP9DQmgHS5hoCEdAmDNu2mYShHV9lChoBkfAI05DRc/t6WgHTegDaAhHQJg0gLc9GI91fZQoaAZHwCkbrkbPyCpoB0uKaAhHQJg5rJPqLTB1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 88, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}