--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: whisper-medium-production results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: test args: default metrics: - name: Wer type: wer value: 34.21052631578947 --- # whisper-medium-production This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3373 - Wer Ortho: 34.2105 - Wer: 34.2105 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 30 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.0296 | 20.0 | 60 | 0.3520 | 50.0 | 47.3684 | | 0.0001 | 40.0 | 120 | 0.3399 | 34.2105 | 34.2105 | | 0.0 | 60.0 | 180 | 0.3378 | 34.2105 | 34.2105 | | 0.0 | 80.0 | 240 | 0.3370 | 34.2105 | 34.2105 | | 0.0 | 100.0 | 300 | 0.3373 | 34.2105 | 34.2105 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1