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Abstract

Recent studies have demonstrated the ef-
ficiency of generative pretraining for En-
glish natural language understanding. In
this work, we extend this approach to mul-
tiple languages and show the effectiveness
of cross-lingual pretraining. We propose
two methods to learn cross-lingual lan-
guage models (XLMs): one unsupervised
that only relies on monolingual data, and
one supervised that leverages parallel data
with a new cross-lingual language model
objective. We obtain state-of-the-art re-
sults on cross-lingual classification, unsu-
pervised and supervised machine transla-
tion. On XNLI, our approach pushes the
state of the art by an absolute gain of 4.9%
accuracy. On unsupervised machine trans-
lation, we obtain 34.3 BLEU on WMT’16
German-English, improving the previous
state of the art by more than 9 BLEU. On
supervised machine translation, we obtain
a new state of the art of 38.5 BLEU on
WMT’16 Romanian-English, outperform-
ing the previous best approach by more
than 4 BLEU. Our code and pretrained
models will be made publicly available.

1 Introduction

Generative pretraining of sentence encoders (Rad-
ford et al., 2018; Howard and Ruder, 2018; Devlin
et al., 2018) has led to strong improvements on
numerous natural language understanding bench-
marks (Wang et al., 2018). In this context, a Trans-
former (Vaswani et al., 2017) language model is
learned on a large unsupervised text corpus, and
then fine-tuned on natural language understand-
ing (NLU) tasks such as classification (Socher

∗Equal contribution.

et al., 2013) or natural language inference (Bow-
man et al., 2015; Williams et al., 2017). Al-
though there has been a surge of interest in learn-
ing general-purpose sentence representations, re-
search in that area has been essentially monolin-
gual, and largely focused around English bench-
marks (Conneau and Kiela, 2018; Wang et al.,
2018). Recent developments in learning and eval-
uating cross-lingual sentence representations in
many languages (Conneau et al., 2018b) aim at
mitigating the English-centric bias and suggest
that it is possible to build universal cross-lingual
encoders that can encode any sentence into a
shared embedding space.

In this work, we demonstrate the effective-
ness of cross-lingual language model pretraining
on multiple cross-lingual understanding (XLU)
benchmarks. Precisely, we make the following
contributions:

1. We introduce a new unsupervised method for
learning cross-lingual representations using
cross-lingual language modeling and investi-
gate two monolingual pretraining objectives.

2. We introduce a new supervised learning ob-
jective that improves cross-lingual pretrain-
ing when parallel data is available.

3. We significantly outperform the previous
state of the art on cross-lingual classification,
unsupervised machine translation and super-
vised machine translation.

4. We show that cross-lingual language models
can provide significant improvements on the
perplexity of low-resource languages.

5. We will make our code and pretrained models
publicly available.
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2 Related Work

Our work builds on top of Radford et al. (2018);
Howard and Ruder (2018); Devlin et al. (2018)
who investigate language modeling for pretrain-
ing Transformer encoders. Their approaches lead
to drastic improvements on several classification
tasks from the GLUE benchmark (Wang et al.,
2018). Ramachandran et al. (2016) show that
language modeling pretraining can also provide
significant improvements on machine translation
tasks, even for high-resource language pairs such
as English-German where there exists a signifi-
cant amount of parallel data. Concurrent to our
work, results on cross-lingual classification using
a cross-lingual language modeling approach were
showcased on the BERT repository1. We compare
those results to our approach in Section 5.

Aligning distributions of text representations
has a long tradition, starting from word embed-
dings alignment and the work of Mikolov et al.
(2013a) that leverages small dictionaries to align
word representations from different languages. A
series of follow-up studies show that cross-lingual
representations can be used to improve the qual-
ity of monolingual representations (Faruqui and
Dyer, 2014), that orthogonal transformations are
sufficient to align these word distributions (Xing
et al., 2015), and that all these techniques can be
applied to an arbitrary number of languages (Am-
mar et al., 2016). Following this line of work, the
need for cross-lingual supervision was further re-
duced (Smith et al., 2017) until it was completely
removed (Conneau et al., 2018a). In this work, we
take these ideas one step further by aligning dis-
tributions of sentences and also reducing the need
for parallel data.

There is a large body of work on aligning sen-
tence representations from multiple languages. By
using parallel data, Hermann and Blunsom (2014);
Conneau et al. (2018b); Eriguchi et al. (2018) in-
vestigated zero-shot cross-lingual sentence classi-
fication. But the most successful recent approach
of cross-lingual encoders is probably the one of
Johnson et al. (2017) for multilingual machine
translation. They show that a single sequence-to-
sequence model can be used to perform machine
translation for many language pairs, by using a
single shared LSTM encoder and decoder. Their
multilingual model outperformed the state of the
art on low-resource language pairs, and enabled

1https://github.com/google-research/bert

zero-shot translation. Following this approach,
Artetxe and Schwenk (2018) show that the result-
ing encoder can be used to produce cross-lingual
sentence embeddings. Their approach leverages
more than 200 million parallel sentences. They
obtained a new state of the art on the XNLI cross-
lingual classification benchmark (Conneau et al.,
2018b) by learning a classifier on top of the fixed
sentence representations. While these methods re-
quire a significant amount of parallel data, recent
work in unsupervised machine translation show
that sentence representations can be aligned in
a completely unsupervised way (Lample et al.,
2018a; Artetxe et al., 2018). For instance, Lample
et al. (2018b) obtained 25.2 BLEU on WMT’16
German-English without using parallel sentences.
Similar to this work, we show that we can align
distributions of sentences in a completely unsuper-
vised way, and that our cross-lingual models can
be used for a broad set of natural language under-
standing tasks, including machine translation.

The most similar work to ours is probably the
one of Wada and Iwata (2018), where the au-
thors train a LSTM (Hochreiter and Schmidhuber,
1997) language model with sentences from dif-
ferent languages. They share the LSTM param-
eters, but use different lookup tables to represent
the words in each language. They focus on align-
ing word representations and show that their ap-
proach work well on word translation tasks.

3 Cross-lingual language models

In this section, we present the three language mod-
eling objectives we consider throughout this work.
Two of them only require monolingual data (un-
supervised), while the third one requires parallel
sentences (supervised). We considerN languages.
Unless stated otherwise, we suppose that we have
N monolingual corpora {Ci}i=1...N , and we de-
note by ni the number of sentences in Ci.

3.1 Shared sub-word vocabulary

In all our experiments we process all languages
with the same shared vocabulary created through
Byte Pair Encoding (BPE) (Sennrich et al., 2015).
As shown in Lample et al. (2018a), this greatly im-
proves the alignment of embedding spaces across
languages that share either the same alphabet or
anchor tokens such as digits (Smith et al., 2017) or
proper nouns. We learn the BPE splits on the con-
catenation of sentences sampled randomly from

https://github.com/google-research/bert
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the monolingual corpora. Sentences are sampled
according to a multinomial distribution with prob-
abilities {qi}i=1...N , where:

qi =
pαi∑N
j=1 p

α
j

with pi =
ni∑N
k=1 nk

.

We consider α = 0.5. Sampling with this dis-
tribution increases the number of tokens associ-
ated to low-resource languages and alleviates the
bias towards high-resource languages. In particu-
lar, this prevents words of low-resource languages
from being split at the character level.

3.2 Causal Language Modeling (CLM)

Our causal language modeling (CLM) task con-
sists of a Transformer language model trained to
model the probability of a word given the previ-
ous words in a sentence P (wt|w1, . . . , wt−1, θ).
While recurrent neural networks obtain state-of-
the-art performance on language modeling bench-
marks (Mikolov et al., 2010; Jozefowicz et al.,
2016), Transformer models are also very competi-
tive (Dai et al., 2019).

In the case of LSTM language models, back-
propagation through time (Werbos, 1990) (BPTT)
is performed by providing the LSTM with the
last hidden state of the previous iteration. In the
case of Transformers, previous hidden states can
be passed to the current batch (Al-Rfou et al.,
2018) to provide context to the first words in the
batch. However, this technique does not scale to
the cross-lingual setting, so we just leave the first
words in each batch without context for simplicity.

3.3 Masked Language Modeling (MLM)

We also consider the masked language model-
ing (MLM) objective of Devlin et al. (2018), also
known as the Cloze task (Taylor, 1953). Follow-
ing Devlin et al. (2018), we sample randomly 15%
of the BPE tokens from the text streams, replace
them by a [MASK] token 80% of the time, by
a random token 10% of the time, and we keep
them unchanged 10% of the time. Differences be-
tween our approach and the MLM of Devlin et al.
(2018) include the use of text streams of an ar-
bitrary number of sentences (truncated at 256 to-
kens) instead of pairs of sentences. To counter the
imbalance between rare and frequent tokens (e.g.
punctuations or stop words), we also subsample
the frequent outputs using an approach similar to
Mikolov et al. (2013b): tokens in a text stream are

sampled according to a multinomial distribution,
whose weights are proportional to the square root
of their invert frequencies. Our MLM objective is
illustrated in Figure 1.

3.4 Translation Language Modeling (TLM)
Both the CLM and MLM objectives are unsuper-
vised and only require monolingual data. How-
ever, these objectives cannot be used to leverage
parallel data when it is available. We introduce a
new translation language modeling (TLM) objec-
tive for improving cross-lingual pretraining. Our
TLM objective is an extension of MLM, where in-
stead of considering monolingual text streams, we
concatenate parallel sentences as illustrated in Fig-
ure 1. We randomly mask words in both the source
and target sentences. To predict a word masked
in an English sentence, the model can either at-
tend to surrounding English words or to the French
translation, encouraging the model to align the En-
glish and French representations. In particular, the
model can leverage the French context if the En-
glish one is not sufficient to infer the masked En-
glish words. To facilitate the alignment, we also
reset the positions of target sentences.

3.5 Cross-lingual Language Models
In this work, we consider cross-lingual language
model pretraining with either CLM, MLM, or
MLM used in combination with TLM. For the
CLM and MLM objectives, we train the model
with batches of 64 streams of continuous sen-
tences composed of 256 tokens. At each iteration,
a batch is composed of sentences coming from the
same language, which is sampled from the distri-
bution {qi}i=1...N above, with α = 0.7. When
TLM is used in combination with MLM, we alter-
nate between these two objectives, and sample the
language pairs with a similar approach.

4 Cross-lingual language model
pretraining

In this section, we explain how cross-lingual lan-
guage models can be used to obtain:

• a better initialization of sentence encoders for
zero-shot cross-lingual classification

• a better initialization of supervised and unsu-
pervised neural machine translation systems

• language models for low-resource languages

• unsupervised cross-lingual word embeddings
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Figure 1: Cross-lingual language model pretraining. The MLM objective is similar to the one of Devlin et al. (2018), but
with continuous streams of text as opposed to sentence pairs. The TLM objective extends MLM to pairs of parallel sentences. To
predict a masked English word, the model can attend to both the English sentence and its French translation, and is encouraged
to align English and French representations. Position embeddings of the target sentence are reset to facilitate the alignment.

4.1 Cross-lingual classification

Our pretrained XLM models provide general-
purpose cross-lingual text representations. Similar
to monolingual language model fine-tuning (Rad-
ford et al., 2018; Devlin et al., 2018) on En-
glish classification tasks, we fine-tune XLMs on a
cross-lingual classification benchmark. We use the
cross-lingual natural language inference (XNLI)
dataset to evaluate our approach. Precisely, we add
a linear classifier on top of the first hidden state of
the pretrained Transformer, and fine-tune all pa-
rameters on the English NLI training dataset. We
then evaluate the capacity of our model to make
correct NLI predictions in the 15 XNLI languages.
Following Conneau et al. (2018b), we also include
machine translation baselines of train and test sets.
We report our results in Table 1.

4.2 Unsupervised Machine Translation

Pretraining is a key ingredient of unsupervised
neural machine translation (UNMT) (Lample
et al., 2018a; Artetxe et al., 2018). Lample et al.
(2018b) show that the quality of pretrained cross-
lingual word embeddings used to initialize the
lookup table has a significant impact on the per-
formance of an unsupervised machine translation
model. We propose to take this idea one step
further by pretraining the entire encoder and de-

coder with a cross-lingual language model to boot-
strap the iterative process of UNMT. We explore
various initialization schemes and evaluate their
impact on several standard machine translation
benchmarks, including WMT’14 English-French,
WMT’16 English-German and WMT’16 English-
Romanian. Results are presented in Table 2.

4.3 Supervised Machine Translation

We also investigate the impact of cross-lingual
language modeling pretraining for supervised ma-
chine translation, and extend the approach of Ra-
machandran et al. (2016) to multilingual NMT
(Johnson et al., 2017). We evaluate the impact
of both CLM and MLM pretraining on WMT’16
Romanian-English, and present results in Table 3.

4.4 Low-resource language modeling

For low-resource languages, it is often benefi-
cial to leverage data in similar but higher-resource
languages, especially when they share a signifi-
cant fraction of their vocabularies. For instance,
there are about 100k sentences written in Nepali
on Wikipedia, and about 6 times more in Hindi.
These two languages also have more than 80% of
their tokens in common in a shared BPE vocabu-
lary of 100k subword units. We provide in Table 4
a comparison in perplexity between a Nepali lan-
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guage model and a cross-lingual language model
trained in Nepali but enriched with different com-
binations of Hindi and English data.

4.5 Unsupervised cross-lingual word
embeddings

Conneau et al. (2018a) showed how to perform
unsupervised word translation by aligning mono-
lingual word embedding spaces with adversarial
training (MUSE). Lample et al. (2018a) showed
that using a shared vocabulary between two lan-
guages and then applying fastText (Bojanowski
et al., 2017) on the concatenation of their mono-
lingual corpora also directly provides high-quality
cross-lingual word embeddings (Concat) for lan-
guages that share a common alphabet. In this
work, we also use a shared vocabulary but our
word embeddings are obtained via the lookup ta-
ble of our cross-lingual language model (XLM). In
Section 5, we compare these three approaches on
three different metrics: cosine similarity, L2 dis-
tance and cross-lingual word similarity.

5 Experiments and results

In this section, we empirically demonstrate the
strong impact of cross-lingual language model
pretraining on several benchmarks, and compare
our approach to the current state of the art.

5.1 Training details

In all experiments, we use a Transformer archi-
tecture with 1024 hidden units, 8 heads, GELU
activations (Hendrycks and Gimpel, 2016), a
dropout rate of 0.1 and learned positional embed-
dings. We train our models with the Adam op-
timizer (Kingma and Ba, 2014), a linear warm-
up (Vaswani et al., 2017) and learning rates vary-
ing from 10−4 to 5.10−4.

For the CLM and MLM objectives, we use
streams of 256 tokens and a mini-batches of size
64. Unlike Devlin et al. (2018), a sequence in a
mini-batch can contain more than two consecu-
tive sentences, as explained in Section 3.2. For
the TLM objective, we sample mini-batches of
4000 tokens composed of sentences with similar
lengths. We use the averaged perplexity over lan-
guages as a stopping criterion for training. For
machine translation, we only use 6 layers, and we
create mini-batches of 2000 tokens.

When fine-tuning on XNLI, we use mini-
batches of size 8 or 16, and we clip the sentence

length to 256 words. We use 80k BPE splits and
a vocabulary of 95k and train a 12-layer model
on the Wikipedias of the XNLI languages. We
sample the learning rate of the Adam optimizer
with values from 5.10−4 to 2.10−4, and use small
evaluation epochs of 20000 random samples. We
use the first hidden state of the last layer of the
transformer as input to the randomly initialized fi-
nal linear classifier, and fine-tune all parameters.
In our experiments, using either max-pooling or
mean-pooling over the last layer did not work bet-
ter than using the first hidden state.

We implement all our models in Py-
Torch (Paszke et al., 2017), and train them
on 64 Volta GPUs for the language modeling
tasks, and 8 GPUs for the MT tasks. We use
float16 operations to speed up training and to
reduce the memory usage of our models.

5.2 Data preprocessing

We use WikiExtractor2 to extract raw sentences
from Wikipedia dumps and use them as mono-
lingual data for the CLM and MLM objectives.
For the TLM objective, we only use parallel data
that involves English, similar to Conneau et al.
(2018b). Precisely, we use MultiUN (Ziemski
et al., 2016) for French, Spanish, Russian, Ara-
bic and Chinese, and the IIT Bombay corpus
(Anoop et al., 2018) for Hindi. We extract the fol-
lowing corpora from the OPUS 3 website Tiede-
mann (2012): the EUbookshop corpus for Ger-
man, Greek and Bulgarian, OpenSubtitles 2018
for Turkish, Vietnamese and Thai, Tanzil for both
Urdu and Swahili and GlobalVoices for Swahili.
For Chinese, Japanese and Thai we use the tok-
enizer of Chang et al. (2008), the Kytea4 tokenizer,
and the PyThaiNLP5 tokenizer respectively. For
all other languages, we use the tokenizer provided
by Moses (Koehn et al., 2007), falling back on the
default English tokenizer when necessary. We use
fastBPE6 to learn BPE codes and split words into
subword units. The BPE codes are learned on the
concatenation of sentences sampled from all lan-
guages, following the method presented in Sec-
tion 3.1.

2https://github.com/attardi/wikiextractor
3http://opus.nlpl.eu
4http://www.phontron.com/kytea
5https://github.com/PyThaiNLP/pythainlp
6https://github.com/glample/fastBPE

https://github.com/attardi/wikiextractor
http://opus.nlpl.eu
http://www.phontron.com/kytea
https://github.com/PyThaiNLP/pythainlp
https://github.com/glample/fastBPE
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en fr es de el bg ru tr ar vi th zh hi sw ur ∆

Machine translation baselines (TRANSLATE-TRAIN)

Devlin et al. (2018) 81.9 - 77.8 75.9 - - - - 70.7 - - 76.6 - - 61.6 -
XLM (MLM+TLM) 85.0 80.2 80.8 80.3 78.1 79.3 78.1 74.7 76.5 76.6 75.5 78.6 72.3 70.9 63.2 76.7

Machine translation baselines (TRANSLATE-TEST)

Devlin et al. (2018) 81.4 - 74.9 74.4 - - - - 70.4 - - 70.1 - - 62.1 -
XLM (MLM+TLM) 85.0 79.0 79.5 78.1 77.8 77.6 75.5 73.7 73.7 70.8 70.4 73.6 69.0 64.7 65.1 74.2

Evaluation of cross-lingual sentence encoders

Conneau et al. (2018b) 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6
Devlin et al. (2018) 81.4 - 74.3 70.5 - - - - 62.1 - - 63.8 - - 58.3 -
Artetxe and Schwenk (2018) 73.9 71.9 72.9 72.6 73.1 74.2 71.5 69.7 71.4 72.0 69.2 71.4 65.5 62.2 61.0 70.2
XLM (MLM) 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5
XLM (MLM+TLM) 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1

Table 1: Results on cross-lingual classification accuracy. Test accuracy on the 15 XNLI languages.
We report results for machine translation baselines and zero-shot classification approaches based on
cross-lingual sentence encoders. XLM (MLM) corresponds to our unsupervised approach trained only
on monolingual corpora, and XLM (MLM+TLM) corresponds to our supervised method that leverages
both monolingual and parallel data through the TLM objective. ∆ corresponds to the average accuracy.

5.3 Results and analysis

In this section, we demonstrate the effectiveness of
cross-lingual language model pretraining. Our ap-
proach significantly outperforms the previous state
of the art on cross-lingual classification, unsuper-
vised and supervised machine translation.

Cross-lingual classification In Table 1, we eval-
uate two types of pretrained cross-lingual en-
coders: an unsupervised cross-lingual language
model that uses the MLM objective on monolin-
gual corpora only; and a supervised cross-lingual
language model that combines both the MLM
and the TLM loss using additional parallel data.
Following Conneau et al. (2018b), we include
two machine translation baselines: TRANSLATE-
TRAIN, where the English MultiNLI training
set is machine translated into each XNLI lan-
guage, and TRANSLATE-TEST where every dev
and test set of XNLI is translated to English.
We report the XNLI baselines of Conneau et al.
(2018b), the multilingual BERT approach of De-
vlin et al. (2018) and the recent work of Artetxe
and Schwenk (2018).

Our fully unsupervised MLM method sets a
new state of the art on zero-shot cross-lingual clas-
sification and significantly outperforms the super-
vised approach of Artetxe and Schwenk (2018)
which uses 223 million of parallel sentences. Pre-
cisely, MLM obtains 71.5% accuracy on average
(∆), while they obtained 70.2% accuracy. By
leveraging parallel data through the TLM objec-
tive (MLM+TLM), we get a significant boost in

performance of 3.6% accuracy, improving even
further the state of the art to 75.1%. On the
Swahili and Urdu low-resource languages, we out-
perform the previous state of the art by 6.2%
and 6.3% respectively. Using TLM in addition
to MLM also improves English accuracy from
83.2% to 85% accuracy, outperforming Artetxe
and Schwenk (2018) and Devlin et al. (2018) by
11.1% and 3.6% accuracy respectively.

When fine-tuned on the training set of each
XNLI language (TRANSLATE-TRAIN), our su-
pervised model outperforms our zero-shot ap-
proach by 1.6%, reaching an absolute state of
the art of 76.7% average accuracy. This result
demonstrates in particular the consistency of our
approach and shows that XLMs can be fine-tuned
on any language with strong performance. Similar
to the multilingual BERT (Devlin et al., 2018), we
observe that TRANSLATE-TRAIN outperforms
TRANSLATE-TEST by 2.5% average accuracy,
and additionally that our zero-shot approach out-
performs TRANSLATE-TEST by 0.9%.

Unsupervised machine translation For the un-
supervised machine translation task we consider 3
language pairs: English-French, English-German,
and English-Romanian. Our setting is identical to
the one of Lample et al. (2018b), except for the
initialization step where we use cross-lingual lan-
guage modeling to pretrain the full model as op-
posed to only the lookup table.

For both the encoder and the decoder, we con-
sider different possible initializations: CLM pre-
training, MLM pretraining, or random initializa-
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en-fr fr-en en-de de-en en-ro ro-en

Previous state-of-the-art - Lample et al. (2018b)

NMT 25.1 24.2 17.2 21.0 21.2 19.4
PBSMT 28.1 27.2 17.8 22.7 21.3 23.0
PBSMT + NMT 27.6 27.7 20.2 25.2 25.1 23.9

Our results for different encoder and decoder initializations

EMB EMB 29.4 29.4 21.3 27.3 27.5 26.6
- - 13.0 15.8 6.7 15.3 18.9 18.3
- CLM 25.3 26.4 19.2 26.0 25.7 24.6
- MLM 29.2 29.1 21.6 28.6 28.2 27.3

CLM - 28.7 28.2 24.4 30.3 29.2 28.0
CLM CLM 30.4 30.0 22.7 30.5 29.0 27.8
CLM MLM 32.3 31.6 24.3 32.5 31.6 29.8
MLM - 31.6 32.1 27.0 33.2 31.8 30.5
MLM CLM 33.4 32.3 24.9 32.9 31.7 30.4
MLM MLM 33.4 33.3 26.4 34.3 33.3 31.8

Table 2: Results on unsupervised MT. BLEU
scores on WMT’14 English-French, WMT’16
German-English and WMT’16 Romanian-
English. For our results, the first two columns
indicate the model used to pretrain the encoder
and the decoder. “ - ” means the model was
randomly initialized. EMB corresponds to
pretraining the lookup table with cross-lingual
embeddings, CLM and MLM correspond to
pretraining with models trained on the CLM or
MLM objectives.

tion, which results in 9 different settings. We
then follow Lample et al. (2018b) and train the
model with a denoising auto-encoding loss along
with an online back-translation loss. Results are
reported in Table 2. We compare our approach
with the ones of Lample et al. (2018b). For each
language pair, we observe significant improve-
ments over the previous state of the art. We re-
implemented the NMT approach of Lample et al.
(2018b) (EMB), and obtained better results than
reported in their paper. We expect that this is
due to our multi-GPU implementation which uses
significantly larger batches. In German-English,
our best model outperforms the previous unsuper-
vised approach by more than 9.1 BLEU, and 13.3
BLEU if we only consider neural unsupervised
approaches. Compared to pretraining only the
lookup table (EMB), pretraining both the encoder
and decoder with MLM leads to consistent signif-
icant improvements of up to 7 BLEU on German-
English. We also observe that the MLM objec-
tive pretraining consistently outperforms the CLM
one, going from 30.4 to 33.4 BLEU on English-
French, and from 28.0 to 31.8 on Romanian-
English. These results are consistent with the ones
of Devlin et al. (2018) who observed a better gen-

Pretraining - CLM MLM

Sennrich et al. (2016) 33.9 - -
ro→ en 28.4 31.5 35.3
ro↔ en 28.5 31.5 35.6
ro↔ en + BT 34.4 37.0 38.5

Table 3: Results on supervised MT. BLEU scores
on WMT’16 Romanian-English. The previous
state-of-the-art of Sennrich et al. (2016) uses both
back-translation and an ensemble model. ro↔ en
corresponds to models trained on both directions.

eralization on NLU tasks when training on the
MLM objective compared to CLM. We also ob-
serve that the encoder is the most important ele-
ment to pretrain: when compared to pretraining
both the encoder and the decoder, pretraining only
the decoder leads to a significant drop in perfor-
mance, while pretraining only the encoder only
has a small impact on the final BLEU score.

Supervised machine translation In Table 3
we report the performance on Romanian-English
WMT’16 for different supervised training config-
urations: mono-directional (ro→en), bidirectional
(ro↔en, a multi-NMT model trained on both
en→ro and ro→en) and bidirectional with back-
translation (ro↔en + BT). Models with back-
translation are trained with the same monolin-
gual data as language models used for pretraining.
As in the unsupervised setting, we observe that
pretraining provides a significant boost in BLEU
score for each configuration, and that pretraining
with the MLM objective leads to the best perfor-
mance. Also, while models with back-translation
have access to the same amount of monolingual
data as the pretrained models, they are not able
to generalize as well on the evaluation sets. Our
bidirectional model trained with back-translation
obtains the best performance and reaches 38.5
BLEU, outperforming the previous SOTA of Sen-
nrich et al. (2016) (based on back-translation and
ensemble models) by more than 4 BLEU.

Low-resource language model In Table 4, we
investigate the impact of cross-lingual language
modeling for improving the perplexity of a Nepali
language model. To do so, we train a Nepali lan-
guage model on Wikipedia, together with addi-
tional data from either English or Hindi. While
Nepali and English are distant languages, Nepali
and Hindi are similar as they share the same De-
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Training languages Nepali perplexity

Nepali 157.2
Nepali + English 140.1
Nepali + Hindi 115.6
Nepali + English + Hindi 109.3

Table 4: Results on language modeling. Nepali
perplexity when using additional data from a sim-
ilar language (Hindi) or a distant one (English).

vanagari script and have a common Sanskrit an-
cestor. When using English data, we reduce the
perplexity on the Nepali language model by 17.1
points, going from 157.2 for Nepali-only language
modeling to 140.1 when using English. Using ad-
ditional data from Hindi, we get a much larger
perplexity reduction of 41.6. Finally, by leverag-
ing data from both English and Hindi, we reduce
the perplexity even more to 109.3 on Nepali. The
gains in perplexity from cross-lingual language
modeling can be partly explained by the n-grams
anchor points that are shared across languages, for
instance in Wikipedia articles. The cross-lingual
language model can thus transfer the additional
context provided by the Hindi or English mono-
lingual corpora through these anchor points to im-
prove the Nepali language model.

Unsupervised cross-lingual word embeddings
The MUSE, Concat and XLM (MLM) methods
provide unsupervised cross-lingual word embed-
ding spaces that have different properties. In Ta-
ble 5, we study those three methods using the same
word vocabulary and compute the cosine similar-
ity and L2 distance between word translation pairs
from the MUSE dictionaries. We also evaluate
the quality of the cosine similarity measure via
the SemEval’17 cross-lingual word similarity task
of Camacho-Collados et al. (2017). We observe
that XLM outperforms both MUSE and Concat on
cross-lingual word similarity, reaching a Pearson
correlation of 0.69. Interestingly, word transla-
tion pairs are also far closer in the XLM cross-
lingual word embedding space than for MUSE or
Concat. Specifically, MUSE obtains 0.38 and 5.13
for cosine similarity and L2 distance while XLM
gives 0.55 and 2.64 for the same metrics. Note
that XLM embeddings have the particularity of be-
ing trained together with a sentence encoder which
may enforce this closeness, while MUSE and Con-
cat are based on fastText word embeddings.

Cosine sim. L2 dist. SemEval’17

MUSE 0.38 5.13 0.65
Concat 0.36 4.89 0.52
XLM 0.55 2.64 0.69

Table 5: Unsupervised cross-lingual word em-
beddings Cosine similarity and L2 distance be-
tween source words and their translations. Pear-
son correlation on SemEval’17 cross-lingual word
similarity task of Camacho-Collados et al. (2017).

6 Conclusion

In this work, we show for the first time the strong
impact of cross-lingual language model (XLM)
pretraining. We investigate two unsupervised
training objectives that require only monolingual
corpora: Causal Language Modeling (CLM) and
Masked Language Modeling (MLM). We show
that both the CLM and MLM approaches pro-
vide strong cross-lingual features that can be used
for pretraining models. On unsupervised ma-
chine translation, we show that MLM pretrain-
ing is extremely effective. We reach a new state
of the art of 34.3 BLEU on WMT’16 German-
English, outperforming the previous best approach
by more than 9 BLEU. Similarly, we obtain strong
improvements on supervised machine translation.
We reach a new state of the art on WMT’16
Romanian-English of 38.5 BLEU, which corre-
sponds to an improvement of more than 4 BLEU
points. We also demonstrate that cross-lingual
language model can be used to improve the per-
plexity of a Nepali language model, and that it
provides unsupervised cross-lingual word embed-
dings. Without using a single parallel sentence,
a cross-lingual language model fine-tuned on the
XNLI cross-lingual classification benchmark al-
ready outperforms the previous supervised state of
the art by 1.3% accuracy on average. A key con-
tribution of our work is the translation language
modeling (TLM) objective which improves cross-
lingual language model pretraining by leveraging
parallel data. TLM naturally extends the BERT
MLM approach by using batches of parallel sen-
tences instead of consecutive sentences. We ob-
tain a significant gain by using TLM in addition
to MLM, and we show that this supervised ap-
proach beats the previous state of the art on XNLI
by 4.9% accuracy on average. Our code and pre-
trained models will be made publicly available.
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