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Abstract

Language models (LMs) exhibit remarkable
abilities to solve new tasks from just a few
examples or textual instructions, especially at
scale. They also, paradoxically, struggle with
basic functionality, such as arithmetic or fac-
tual lookup, where much simpler and smaller
models excel. In this paper, we show that
LMs can teach themselves to use external tools
via simple APIs and achieve the best of both
worlds. We introduce Toolformer, a model
trained to decide which APIs to call, when to
call them, what arguments to pass, and how to
best incorporate the results into future token
prediction. This is done in a self-supervised
way, requiring nothing more than a handful of
demonstrations for each API. We incorporate
a range of tools, including a calculator, a Q&A
system, a search engine, a translation system,
and a calendar. Toolformer achieves substan-
tially improved zero-shot performance across
a variety of downstream tasks, often competi-
tive with much larger models, without sacrific-
ing its core language modeling abilities.

1 Introduction

Large language models achieve impressive zero-
and few-shot results on a variety of natural lan-
guage processing tasks (Brown et al., 2020; Chowd-
hery et al., 2022, i.a.) and show several emergent
capabilities (Wei et al., 2022). However, all of
these models have several inherent limitations that
can at best be partially addressed by further scal-
ing. These limitations include an inability to access
up-to-date information on recent events (Komeili
et al., 2022) and the related tendency to hallucinate
facts (Maynez et al., 2020; Ji et al., 2022), difficul-
ties in understanding low-resource languages (Lin
et al., 2021), a lack of mathematical skills to per-
form precise calculations (Patel et al., 2021) and an
unawareness of the progression of time (Dhingra
et al., 2022).

The New England Journal of Medicine is a registered 
trademark of [QA(“Who is the publisher of The New 
England Journal of Medicine?”) → Massachusetts 
Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) 
→ 0.29] 29%) passed the test. 

The name derives from “la tortuga”, the Spanish word for 
[MT(“tortuga”) → turtle] turtle.

The Brown Act is California’s law [WikiSearch(“Brown 
Act”) → The Ralph M. Brown Act is an act of the 
California State Legislature that guarantees the public's 
right to attend and participate in meetings of local 
legislative bodies.] that requires legislative bodies, like 
city councils, to hold their meetings open to the public.

Figure 1: Exemplary predictions of Toolformer. The
model autonomously decides to call different APIs
(from top to bottom: a question answering system,
a calculator, a machine translation system, and a
Wikipedia search engine) to obtain information that is
useful for completing a piece of text.

A simple way to overcome these limitations of
today’s language models is to give them the abil-
ity to use external tools such as search engines,
calculators, or calendars. However, existing ap-
proaches either rely on large amounts of human
annotations (Komeili et al., 2022; Thoppilan et al.,
2022) or limit tool use to task-specific settings only
(e.g., Gao et al., 2022; Parisi et al., 2022), hinder-
ing a more widespread adoption of tool use in LMs.
Therefore, we propose Toolformer, a model that
learns to use tools in a novel way, which fulfills the
following desiderata:

• The use of tools should be learned in a
self-supervised way without requiring large
amounts of human annotations. This is impor-
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x1:i-1  = Pittsburgh is 
             also known as

   xi:n = the Steel City

x* = Pittsburgh is 
        also known as
        [QA(What …? 
        → Steel City)] 
        the Steel City.

ci
1 = What other name is 

         Pittsburgh known by?

ci
2 = Which country is

         Pittsburgh in?

ri
1 = Steel City 

ri
2 = United States

Li(ci
1 → Steel City)

 < min(Li(ci
1 → ε), Li(ε))

Li(ci
2 → United States)

 > min(Li(ci
2 → ε), Li(ε))

1 
Sample API Calls

2 
Execute API Calls

3 
Filter API CallsLM Dataset LM Dataset 

with API Calls

Figure 2: Key steps in our approach, illustrated for a question answering tool: Given an input text x, we first
sample a position i and corresponding API call candidates c1i , c

2
i , . . . , c

k
i . We then execute these API calls and

filter out all calls which do not reduce the loss Li over the next tokens. All remaining API calls are interleaved
with the original text, resulting in a new text x∗.

tant not only because of the costs associated
with such annotations, but also because what
humans find useful may be different from
what a model finds useful.

• The LM should not lose any of its generality
and should be able to decide for itself when
and how to use which tool. In contrast to
existing approaches, this enables a much more
comprehensive use of tools that is not tied to
specific tasks.

Our approach for achieving these goals is based
on the recent idea of using large LMs with in-
context learning (Brown et al., 2020) to generate
entire datasets from scratch (Schick and Schütze,
2021b; Honovich et al., 2022; Wang et al., 2022):
Given just a handful of human-written examples
of how an API can be used, we let a LM annotate
a huge language modeling dataset with potential
API calls. We then use a self-supervised loss to
determine which of these API calls actually help
the model in predicting future tokens. Finally, we
finetune the LM itself on the API calls that it con-
siders useful. As illustrated in Figure 1, through
this simple approach, LMs can learn to control a va-
riety of tools, and to choose for themselves which
tool to use when and how.

As our approach is agnostic of the dataset be-
ing used, we can apply it to the exact same dataset
that was used to pretrain a model in the first place.
This ensures that the model does not lose any
of its generality and language modeling abilities.
We conduct experiments on a variety of differ-
ent downstream tasks, demonstrating that after
learning to use tools, Toolformer, which is based
on a pretrained GPT-J model (Wang and Komat-
suzaki, 2021) with 6.7B parameters, achieves much
stronger zero-shot results, clearly outperforming a
much larger GPT-3 model (Brown et al., 2020) and

several other baselines on various tasks.

2 Approach

Our aim is to equip a language model M with the
ability to use different tools by means of API calls.
We require that inputs and outputs for each API
can be represented as text sequences. This allows
seamless insertion of API calls into any given text,
using special tokens to mark the start and end of
each such call.

We represent each API call as a tuple c = (ac, ic)
where ac is the name of the API and ic is the cor-
responding input. Given an API call c with a cor-
responding result r, we denote the linearized se-
quences of the API call not including and including
its result, respectively, as:

e(c) = <API> ac(ic)</API>

e(c, r) = <API> ac(ic)→ r </API>

where “<API>”, “</API>” and “→” are special
tokens.1 Some examples of linearized API calls
inserted into text sequences are shown in Figure 1.

Given a dataset C = {x1, . . . ,x|C|} of plain
texts, we first convert this dataset into a dataset
C∗ augmented with API calls. This is done in three
steps, illustrated in Figure 2: First, we exploit the
in-context learning ability of M to sample a large
number of potential API calls. We then execute
these API calls and finally check whether the ob-
tained responses are helpful for predicting future
tokens; this is used as a filtering criterion. After
filtering, we merge API calls for different tools,
resulting in the augmented dataset C∗, and finetune

1In practice, we use the token sequences “ [”, “]” and
“->” to represent “<API>”, “</API>” and “→”, respec-
tively. This enables our approach to work without modifying
the existing LM’s vocabulary. For reasons of readability, we
still refer to them as “<API>”, “</API>” and “→” through-
out this section.



Your task is to add calls to a Question Answering API to a 
piece of text. The questions should help you get 
information required to complete the text. You can call the 
API by writing "[QA(question)]" where "question" is the 
question you want to ask. Here are some examples of API 
calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe 
Biden born?")] Scranton, [QA("In which state is 
Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink 
manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is 
Coca-Cola known by?")] Coke, is a carbonated soft drink 
manufactured by [QA("Who manufactures Coca-Cola?")] 
the Coca-Cola Company.

Input: x

Output:

Figure 3: An exemplary prompt P (x) used to generate
API calls for the question answering tool.

M itself on this dataset. Each of these steps is
described in more detail below.

Sampling API Calls For each API, we write a
prompt P (x) that encourages the LM to anno-
tate an example x = x1, . . . , xn with API calls.
An example of such a prompt for a question an-
swering tool is shown in Figure 3; all prompts
used are shown in Appendix A.2. Let pM (zn+1 |
z1, . . . , zn) be the probability that M assigns to
token zn+1 as a continuation for the sequence
z1, . . . , zn. We first sample up to k candidate posi-
tions for doing API calls by computing, for each
i ∈ {1, . . . , n}, the probability

pi = pM (<API> | P (x), x1:i−1)

that M assigns to starting an API call at position
i. Given a sampling threshold τs, we keep all po-
sitions I = {i | pi > τs}; if there are more than k
such positions, we only keep the top k.

For each position i ∈ I , we then obtain up to m
API calls c1i , . . . , c

m
i by sampling fromM given the

sequence [P (x), x1, . . . , xi−1,<API>] as a prefix
and </API> as an end-of-sequence token.2

2We discard all examples where M does not generate the
</API> token.

Executing API Calls As a next step, we execute
all API calls generated by M to obtain the corre-
sponding results. How this is done depends entirely
on the API itself – for example, it can involve call-
ing another neural network, executing a Python
script or using a retrieval system to perform search
over a large corpus. The response for each API call
ci needs to be a single text sequence ri.

Filtering API Calls Let i be the position of the
API call ci in the sequence x = x1, . . . , xn, and let
ri be the response from the API. Further, given a
sequence (wi | i ∈ N) of weights, let

Li(z) = −
n∑

j=i

wj−i · log pM (xj | z, x1:j−1)

be the weighted cross entropy loss for M over the
tokens xi, . . . , xn if the model is prefixed with z.
We compare two different instantiations of this loss:

L+
i = Li(e(ci, ri))

L−i = min (Li(ε), Li(e(ci, ε)))

where ε denotes an empty sequence. The former is
the weighted loss over all tokens xi, . . . , xn if the
API call and its result are given to M as a prefix;3

the latter is the minimum of the losses obtained
from (i) doing no API call at all and (ii) doing an
API call, but not providing the response. Intuitively,
an API call is helpful toM if providing it with both
the input and the output of this call makes it easier
for the model to predict future tokens, compared to
not receiving the API call at all, or receiving only
its input. Given a filtering threshold τf , we thus
only keep API calls for which

L−i − L
+
i ≥ τf

holds, i.e., adding the API call and its result reduces
the loss by at least τf , compared to not doing any
API call or obtaining no result from it.

Model Finetuning After sampling and filtering
calls for all APIs, we finally merge the remaining
API calls and interleave them with the original
inputs. That is, for an input text x = x1, . . . , xn
with a corresponding API call and result (ci, ri) at
position i, we construct the new sequence x∗ =

3We provide e(ci, ri) as a prefix instead of inserting it at
position i because M is not yet finetuned on any examples
containing API calls, so inserting it in the middle of x would
interrupt the flow and not align with patterns in the pretraining
corpus, thus hurting perplexity.



x1:i−1, e(ci, ri), xi:n; we proceed analogously for
texts with multiple API calls. Doing this for all x ∈
C results in the new dataset C∗ augmented with API
calls. We use this new dataset to finetune M , using
a standard language modeling objective. Crucially,
apart from inserted API calls the augmented dataset
C∗ contains the exact same texts as C, the original
dataset. As a consequence, finetuning M on C∗
exposes it to the same content as finetuning on C.
Moreover, as API calls are inserted in exactly those
positions and with exactly those inputs that help
M predict future tokens, finetuning on C∗ enables
the language model to decide when and how to use
which tool, based purely on its own feedback.

Inference When generating text with M after
finetuning with our approach, we perform regular
decoding until M produces the “→” token, indicat-
ing that it next expects the response for an API call.
At this point, we interrupt the decoding process,
call the appropriate API to get a response, and con-
tinue the decoding process after inserting both the
response and the </API> token.

3 Tools

We explore a variety of tools to address different
shortcomings of regular LMs. The only constraints
we impose on these tools is that (i) both their inputs
and outputs can be represented as text sequences,
and (ii) we can obtain a few demonstrations of
their intended use. Concretely, we explore the fol-
lowing five tools: a question answering system, a
Wikipedia search engine, a calculator, a calendar,
and a machine translation system. Some examples
of potential calls and return strings for the APIs
associated with each of these tools are shown in
Table 1. We briefly discuss all tools below; further
details can be found in Appendix A.

Question Answering Our first tool is a question
answering system based on another LM that can an-
swer simple factoid questions. Specifically, we use
Atlas (Izacard et al., 2022), a retrieval-augmented
LM finetuned on Natural Questions (Kwiatkowski
et al., 2019).

Calculator As a second tool, we use a calculator
that can perform simple numeric calculations; we
only support the four basic arithmetic operations.
Results are always rounded to two decimal places.

Wikipedia Search Our third tool is a search en-
gine that, given a search term, returns short text

snippets from Wikipedia. Compared to our ques-
tion answering tool, this search enables a model
to get more comprehensive information on a sub-
ject, but requires it to extract the relevant parts by
itself. As our search engine, we use a BM25 re-
triever (Robertson et al., 1995; Baeza-Yates et al.,
1999) that indexes the Wikipedia dump from KILT
(Petroni et al., 2021).

Machine Translation System Our fourth tool is
a machine translation system based on a LM that
can translate a phrase from any language into En-
glish. More concretely, we use the 600M parameter
NLLB (Costa-jussà et al., 2022) as our multilingual
machine translation model that works for 200 lan-
guages (including low-resource ones). The source
language is automatically detected using the fast-
Text classifier (Joulin et al., 2016), while the target
language is always set to English.

Calendar Our final tool is a calendar API that,
when queried, returns the current date without tak-
ing any input. This provides temporal context for
predictions that require some awareness of time.

4 Experiments

We investigate whether our approach enables a
model to use tools without any further supervision
and to decide for itself when and how to call which
of the available tools. To test this, we select a vari-
ety of downstream tasks where we assume at least
one of the considered tools to be useful, and evalu-
ate performance in zero-shot settings (Section 4.2).
Beyond that, we also ensure that our approach does
not hurt the model’s core language modeling abili-
ties; we verify this by looking at perplexity on two
language modeling datasets (Section 4.3). Finally,
we investigate how the ability to learn using tools
is affected by model size (Section 4.4).

4.1 Experimental Setup

Dataset Generation Throughout all of our ex-
periments, we use a subset of CCNet (Wenzek et al.,
2020) as our language modeling dataset C and GPT-
J (Wang and Komatsuzaki, 2021) as our language
model M . To reduce the computational cost of
annotating C with API calls, we define heuristics
for some APIs to get a subset of C for which API
calls are more likely to be helpful than for an av-
erage text. For example, we only consider texts
for the calculator tool if they contain at least three
numbers. Details of the heuristics used are given in



API Name Example Input Example Output

Question Answering Where was the Knights
of Columbus founded?

New Haven, Connecticut

Wikipedia Search Fishing Reel Types Spin fishing > Spin fishing is distinguished between fly fishing and bait
cast fishing by the type of rod and reel used. There are two types of reels
used when spin fishing, the open faced reel and the closed faced reel.

Calculator 27 + 4 * 2 35

Calendar ε Today is Monday, January 30, 2023.

Machine Translation sûreté nucléaire nuclear safety

Table 1: Examples of inputs and outputs for all APIs used.

Number of Examples
API τf = 0.5 τf = 1.0 τf = 2.0

Question Answering 51,987 18,526 5,135
Wikipedia Search 207,241 60,974 13,944
Calculator 3,680 994 138
Calendar 61,811 20,587 3,007
Machine Translation 3,156 1,034 229

Table 2: Number of examples with API calls in C∗ for
different values of our filtering threshold τf .

Appendix A. For obtaining C∗ from C, we perform
all steps described in Section 2 and additionally
filter out all examples for which all API calls were
eliminated in the filtering step.4 For the weighting
function, we use

wt =
w̃t∑
s∈N w̃s

with w̃t = max(0, 1− 0.2 · t)

to make sure that API calls happen close to where
the information provided by the API is actually
helpful for the model. The thresholds τs and τf are
chosen individually for each tool to ensure a suffi-
ciently larger number of examples; see Appendix A
for details. Table 2 shows relevant statistics of our
final dataset augmented with API calls.

Model Finetuning We finetune M on C∗ using
a batch size of 128 and a learning rate of 1 · 10−5
with linear warmup for the first 10% of training.
Details of our finetuning procedure are given in
Appendix B.

Baseline Models Throughout the remainder of
this section, we mainly compare the following mod-
els:

4While this filtering alters the distribution of training exam-
ples, we assume that the remaining examples are close enough
to the original distribution so that M ’s language modeling
abilities remain unaffected. This assumption is empirically
validated in Section 4.3.

• GPT-J: A regular GPT-J model without any
finetuning.

• GPT-J + CC: GPT-J finetuned on C, our sub-
set of CCNet without any API calls.

• Toolformer: GPT-J finetuned on C∗, our sub-
set of CCNet augmented with API calls.

• Toolformer (disabled): The same model as
Toolformer, but API calls are disabled during
decoding.5

For most tasks, we additionally compare to OPT
(66B) (Zhang et al., 2022) and GPT-36 (175B)
(Brown et al., 2020), two models that are about
10 and 25 times larger than our other baseline mod-
els, respectively.

4.2 Downstream Tasks
We evaluate all models on a variety of downstream
tasks. In all cases, we consider a prompted zero-
shot setup – i.e., models are instructed to solve
each task in natural language, but we do not pro-
vide any in-context examples. This is in contrast
to prior work on tool use (e.g., Gao et al., 2022;
Parisi et al., 2022), where models are provided
with dataset-specific examples of how a tool can be
used to solve a concrete task. We choose the more
challenging zero-shot setup as we are interested
in seeing whether Toolformer works in precisely
those cases where a user does not specify in ad-
vance which tools should be used in which way for
solving a specific problem.

We use standard greedy decoding, but with one
modification for Toolformer: We let the model start
an API call not just when <API> is the most likely

5This is achieved by manually setting the probability of
the <API> token to 0.

6We use the original davinci variant that is not finetuned
on any instructions.



token, but whenever it is one of the k most likely
tokens. For k = 1, this corresponds to regular
greedy decoding; we instead use k = 10 to in-
crease the disposition of our model to make use of
the APIs that it has access to. At the same time,
we only at most one API call per input to make
sure the model does not get stuck in a loop where
it constantly calls APIs without producing any ac-
tual output. The effect of these modifications is
explored in Section 5.

4.2.1 LAMA
We evaluate our models on the SQuAD, Google-
RE and T-REx subsets of the LAMA benchmark
(Petroni et al., 2019). For each of these subsets, the
task is to complete a short statement with a miss-
ing fact (e.g., a date or a place). As LAMA was
originally designed to evaluate masked language
models (e.g., Devlin et al., 2019), we filter out ex-
amples where the mask token is not the final token,
so that the remaining examples can be processed
in a left-to-right fashion. To account for different
tokenizations and added complexity from not in-
forming the model that a single word is required,
we use a slightly more lenient evaluation criterion
than exact match and simply check whether the
correct word is within the first five words predicted
by the model. As LAMA is based on statements
obtained directly from Wikipedia, we prevent Tool-
former from using the Wikipedia Search API to
avoid giving it an unfair advantage.

Results for all models can be seen in Table 3.
All GPT-J models without tool use achieve similar
performance. Crucially, Toolformer clearly outper-
forms these baseline models, improving upon the
best baseline by 11.7, 5.2 and 18.6 points, respec-
tively. It also clearly outperforms OPT (66B) and
GPT-3 (175B), despite both models being much
larger. This is achieved because the model inde-
pendently decides to ask the question answering
tool for the required information in almost all cases
(98.1%); for only very few examples, it uses a dif-
ferent tool (0.7%) or no tool at all (1.2%).

4.2.2 Math Datasets
We test mathematical reasoning abilities on ASDiv
(Miao et al., 2020), SVAMP (Patel et al., 2021) and
the MAWPS benchmark (Koncel-Kedziorski et al.,
2016). We again account for the fact that we test
all models in a zero-shot setup by using a more
lenient evaluation criterion: As the required output
is always a number, we simply check for the first

Model SQuAD Google-RE T-REx

GPT-J 17.8 4.9 31.9
GPT-J + CC 19.2 5.6 33.2
Toolformer (disabled) 22.1 6.3 34.9
Toolformer 33.8 11.5 53.5

OPT (66B) 21.6 2.9 30.1
GPT-3 (175B) 26.8 7.0 39.8

Table 3: Results on subsets of LAMA. Toolformer uses
the question answering tool for most examples, clearly
outperforming all baselines of the same size and achiev-
ing results competitive with GPT-3 (175B).

Model ASDiv SVAMP MAWPS

GPT-J 7.5 5.2 9.9
GPT-J + CC 9.6 5.0 9.3
Toolformer (disabled) 14.8 6.3 15.0
Toolformer 40.4 29.4 44.0

OPT (66B) 6.0 4.9 7.9
GPT-3 (175B) 14.0 10.0 19.8

Table 4: Results for various benchmarks requiring
mathematical reasoning. Toolformer makes use of the
calculator tool for most examples, clearly outperform-
ing even OPT (66B) and GPT-3 (175B).

number predicted by the model.7

Table 4 shows results for all benchmarks. While
GPT-J and GPT-J + CC perform about the same,
Toolformer achieves stronger results even when
API calls are disabled. We surmise that this is be-
cause the model is finetuned on many examples
of API calls and their results, improving its own
mathematical capabilities. Nonetheless, allowing
the model to make API calls more than doubles per-
formance for all tasks, and also clearly outperforms
the much larger OPT and GPT-3 models. This is
because across all benchmarks, for 97.9% of all
examples the model decides to ask the calculator
tool for help.

4.2.3 Question Answering
We look at Web Questions (Berant et al., 2013),
Natural Questions (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017), the three question an-
swering datasets considered by Brown et al. (2020).
For evaluation, we check whether the first 20 words
predicted by a model contain the correct answer
instead of requiring an exact match. For Tool-
former, we disable the question answering tool as

7An exception to this is if the model’s prediction contains
an equation (e.g., “The correct answer is 5+3=8”), in which
case we consider the first number after the “=” sign to be its
prediction.



Model WebQS NQ TriviaQA

GPT-J 18.5 12.8 43.9
GPT-J + CC 18.4 12.2 45.6
Toolformer (disabled) 18.9 12.6 46.7
Toolformer 26.3 17.7 48.8

OPT (66B) 18.6 11.4 45.7
GPT-3 (175B) 29.0 22.6 65.9

Table 5: Results for various question answering dataset.
Using the Wikipedia search tool for most examples,
Toolformer clearly outperforms baselines of the same
size, but falls short of GPT-3 (175B).

this would make solving the tasks trivial, especially
given that the underlying QA system was finetuned
on Natural Questions.

Results are shown in Table 5. Once again,
Toolformer clearly outperforms all other models
based on GPT-J, this time mostly relying on the
Wikipedia search API (99.3%) to find relevant in-
formation. However, Toolformer still lags behind
the much larger GPT-3 (175B) model. This is likely
due to both the simplicity of our search engine (in
many cases, it returns results that are clearly not
a good match for a given query) and the inability
of Toolformer to interact with it, e.g., by refor-
mulating its query if results are not helpful or by
browsing through multiple of the top results. We
believe that adding this functionality is an exciting
direction for future work.

4.2.4 Multilingual Question Answering

We evaluate Toolformer and all baseline models
on MLQA (Lewis et al., 2019), a multilingual
question-answering benchmark. A context para-
graph for each question is provided in English,
while the question can be in Arabic, German, Span-
ish, Hindi, Vietnamese, or Simplified Chinese. In
order to solve the task, the model needs to be able
to understand both the paragraph and the question,
so it may benefit from translating the question into
English. Our evaluation metric is the percentage of
times the model’s generation, capped at 10 words,
contains the correct answer.

Results are shown in Table 6. Using API calls
consistently improves Toolformer’s performance
for all languages, suggesting that it has learned to
make use of the machine translation tool. Depend-
ing on the language, this tool is used for 63.8%
to 94.9% of all examples; the only exception to
this is Hindi, for which the machine translation
tool is used in only 7.3% of cases. However, Tool-

Model Es De Hi Vi Zh Ar

GPT-J 15.2 16.5 1.3 8.2 18.2 8.2
GPT-J + CC 15.7 14.9 0.5 8.3 13.7 4.6
Toolformer (disabled) 19.8 11.9 1.2 10.1 15.0 3.1
Toolformer 20.6 13.5 1.4 10.6 16.8 3.7

OPT (66B) 0.3 0.1 1.1 0.2 0.7 0.1
GPT-3 (175B) 3.4 1.1 0.1 1.7 17.7 0.1

GPT-J (All En) 24.3 27.0 23.9 23.3 23.1 23.6
GPT-3 (All En) 24.7 27.2 26.1 24.9 23.6 24.0

Table 6: Results on MLQA for Spanish (Es), German
(De), Hindi (Hi), Vietnamese (Vi), Chinese (Zh) and
Arabic (Ar). While using the machine translation tool
to translate questions is helpful across all languages,
further pretraining on CCNet deteriorates performance;
consequently, Toolformer does not consistently outper-
form GPT-J. The final two rows correspond to models
that are given contexts and questions in English.

former does not consistently outperform vanilla
GPT-J. This is mainly because for some languages,
finetuning on CCNet deteriorates performance; this
might be due to a distribution shift compared to
GPT-J’s original pretraining data.

OPT and GPT-3 perform surprisingly weak
across all languages, mostly because they fail to
provide an answer in English despite being in-
structed to do so. A potential reason for GPT-J not
suffering from this problem is that it was trained on
more multilingual data than both OPT and GPT-3,
including the EuroParl corpus (Koehn, 2005; Gao
et al., 2020). As an upper bound, we also evaluate
GPT-J and GPT-3 on a variant of MLQA where
both the context and the question are provided in
English. In this setup, GPT-3 performs better than
all other models, supporting our hypothesis that
its subpar performance on MLQA is due to the
multilingual aspect of the task.

4.2.5 Temporal Datasets
To investigate the calendar API’s utility, we eval-
uate all models on TEMPLAMA (Dhingra et al.,
2022) and a new dataset that we call DATESET.
TEMPLAMA is a dataset built from Wikidata that
contains cloze queries about facts that change with
time (e.g., “Cristiano Ronaldo plays for ___”)
as well as the correct answer for the years be-
tween 2010 and 2020. DATESET, described in
Appendix D, is also generated through a series
of templates, but populated using a combination
of random dates/durations (e.g., “What day of the
week was it 30 days ago?”). Critically, knowing the
current date is required to answer these questions.
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Model TEMPLAMA DATESET

GPT-J 13.7 3.9
GPT-J + CC 12.9 2.9
Toolformer (disabled) 12.7 5.9
Toolformer 16.3 27.3

OPT (66B) 14.5 1.3
GPT-3 (175B) 15.5 0.8

Table 7: Results for the temporal datasets. Toolformer
outperforms all baselines, but does not make use of the
calendar tool for TEMPLAMA.

For both tasks, we use the same evaluation as for
the original LAMA dataset.

Results shown in Table 7 illustrate that Tool-
former outperforms all baselines for both TEM-
PLAMA and DATESET. However, closer inspec-
tion shows that improvements on TEMPLAMA
can not be attributed to the calendar tool, which is
only used for 0.2% of all examples, but mostly to
the Wikipedia search and question answering tools,
which Toolformer calls the most. This makes sense
given that named entities in TEMPLAMA are often
so specific and rare that even knowing the exact
date alone would be of little help. The best course
of action for this dataset – first querying the calen-
dar API to get the current date, and then querying
the question answering system with this date – is
not only prohibited by our restriction of using at
most one API call per example, but also hard to
learn for Toolformer given that all API calls in its
training data are sampled independently.

For DATESET, on the other hand, the consider-
able improvement of Toolformer compared to other
models can be fully accredited to the calendar tool,
which it makes use of for 54.8% of all examples.

4.3 Language Modeling

In addition to verifying improved performance on
various downstream tasks, we also want to ensure
that language modeling performance of Toolformer
does not degrade through our finetuning with API
calls. To this end, we evaluate our models on
two language modeling datasets: WikiText (Mer-
ity et al., 2017) and a subset of 10,000 randomly
selected documents from CCNet (Wenzek et al.,
2020) that were not used during training. Perplex-
ities of various models are shown in Table 8. As
one would expect, finetuning on CCNet leads to
slightly improved performance on a different CC-
Net subset, but it slightly deteriorates performance
on WikiText, presumably because the original pre-

Model WikiText CCNet

GPT-J 9.9 10.6
GPT-J + CC 10.3 10.5
Toolformer (disabled) 10.3 10.5

Table 8: Perplexities of different models on WikiText
and our validation subset of CCNet. Adding API calls
comes without a cost in terms of perplexity for lan-
guage modeling without any API calls.

training data for GPT-J is more similar to Wiki-
Text than our randomly selected subset of CCNet.
Most importantly, however, training on C∗ (our
dataset annotated with API calls) does not lead to
an increase in perplexity compared to training on
C when API calls are disabled at inference time.8

4.4 Scaling Laws

We investigate how the ability to ask external tools
for help affects performance as we vary the size
of our LM. To this end, we apply our approach
not just to GPT-J, but also to four smaller mod-
els from the GPT-2 family (Radford et al., 2019),
with 124M, 355M, 775M and 1.6B parameters, re-
spectively. We do so using only a subset of three
tools: the question answering system, the calcula-
tor, and the Wikipedia search engine. Apart from
this, we follow the experimental setup described in
Section 4.1.

Figure 4 shows that the ability to leverage the
provided tools only emerges at around 775M pa-
rameters: smaller models achieve similar perfor-
mance both with and without tools. An exception
to this is the Wikipedia search engine used mostly
for QA benchmarks; we hypothesize that this is
because the API is comparably easy to use. While
models become better at solving tasks without API
calls as they grow in size, their ability to make good
use of the provided API improves at the same time.
As a consequence, there remains a large gap be-
tween predictions with and without API calls even
for our biggest model.

5 Analysis

Decoding Strategy We investigate the effect of
our modified decoding strategy introduced in Sec-
tion 4.2, where instead of always generating the

8We do not evaluate the perplexity of Toolformer with
API calls enabled as computing the probability pM (xt |
x1, . . . , xt−1) of token xt given x1, . . . , xt−1 would require
marginalizing over all potential API calls that the model could
make at position t, which is intractable.
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Figure 4: Average performance on LAMA, our math benchmarks and our QA benchmarks for GPT-2 models of
different sizes and GPT-J finetuned with our approach, both with and without API calls. While API calls are not
helpful to the smallest models, larger models learn how to make good use of them. Even for bigger models, the
gap between model predictions with and without API calls remains high.

most likely token, we generate the <API> token
if it is one of the k most likely tokens. Table 9
shows performance on the T-REx subset of LAMA
and on WebQS for different values of k. As ex-
pected, increasing k leads to the model doing API
calls for more examples – from 40.3% and 8.5%
with k = 1 (i.e., regular greedy decoding) to 98.1%
and 100% for k = 10. While for T-REx, there is
already a clear improvement in performance with
greedy decoding, on WebQS our model only starts
to make a substantial number of API calls as we
slightly increase k. Interestingly, for k = 1 the
model is calibrated to some extent: It decides to
call APIs for examples that it would perform partic-
ularly badly on without making API calls. This can
be seen from the fact that performance on examples
where it decides not to make an API call (44.3 and
19.9) is higher than average performance if no API
calls are made at all (34.9 and 18.9). However, this
calibration is lost for higher values of k.

Data Quality We qualitatively analyze some
API calls generated with our approach for different
APIs. Table 10 shows some examples of texts from
CCNet augmented with API calls, as well as the
corresponding score L−i − L

+
i that is used as a fil-

tering criterion, and whether the API calls made by
the model are intuitively useful in the given context.
As can be seen, high values of L−i − L

+
i typically

correspond to useful API calls, whereas low values
correspond to API calls that do not provide any in-
formation that is useful for predicting future tokens.
There are some exceptions, e.g., an API call for

T-REx WebQS

k All AC NC % All AC NC %

0 34.9 – 34.9 0.0 18.9 – 18.9 0.0
1 47.8 53.0 44.3 40.3 19.3 17.1 19.9 8.5
3 52.9 58.0 29.0 82.8 26.3 26.5 6.6 99.3
10 53.5 54.0 22.5 98.1 26.3 26.4 – 100.0

Table 9: Toolformer results on the T-REx subset of
LAMA and on WebQS for different values of k used
during decoding. Numbers shown are overall perfor-
mance (All), performance on the subset where the
model decides to make an API call (AC) and all re-
maining examples (NC), as well as the percentage of
examples for which the model decides to call an API
(%).

“Fast train success” in the fourth example that does
not give any relevant information but still reduces
perplexity. However, some amount of noise in the
API calls that are not filtered can actually be useful
as it forces the model finetuned on C∗ to not always
blindly follow the results of each call it makes.

6 Related Work

Language Model Pretraining There are various
approaches that augment language models with
some form of additional textual information during
pretraining, including various forms of metadata
(Keskar et al., 2019), HTML tags (Aghajanyan
et al., 2021), Wikipedia markup (Schick et al.,
2022), or related texts obtained from an informa-
tion retrieval system (Guu et al., 2020; Borgeaud
et al., 2021; Izacard et al., 2022). For all of these



Example L−
i −L

+
i Useful

The Flodden Window (a war memorial dedicated to The Middleton Archers), in the Grade I-listed
Church of St Leonard in Middleton is said to be the oldest war memorial in the United King-
dom. <API> WikiSearch(War memorial Flodden)→ Battle of Flodden > Commemoration >
The stained-glass Flodden Window in Middleton Parish Church [. . . ] was constructed by Sir
Richard Assheton in memory of the Battle of Flodden and the archers from Middleton who
fought in it. </API> Sir Richard Assheton of Middleton (who built St Leonard) was granted
knighthood [. . . ]

5.49 3

Note: The WL will be open on Friday, <API> Calendar()→ Today is Thursday, March 9, 2017.
</API> March 10, and Sunday, March 19 for regular hours. 2.11 3

The Nile has an approximate length of <API> QA(What is the approximate length of the Nile?)
→ 6,853 km </API> 6,853 kilometers, the White Nile being its main source. 2.08 3

If Venus had an atmosphere similar to Earth’s then you would expect Venus’ mean temperature to be
499 K (1.74 x 287) rather than 735 K which is <API> Calculator(735 / 499)→ 1.47 </API> 1.47
(735 / 499) times hotter than it should be.

1.59 3

You are here: Home / Featured / Catch this fast train to success! <API> WikiSearch(Fast train
success)→ Fast Train > It also peaked at #23 on the Canadian CHUM singles chart, on June
26, 1971. The success of this single established Myles Goodwyn as the band’s main songwriter,
and made it possible for April Wine to record a second album. </API> Don’t wait weeks and
[. . .]

0.92 7

Os Melhores Escolas em Jersey 2020 <API> MT(Os Melhores Escolas em Jersey)→ The Best
Schools in Jersey </API> On this page you can search for Universities, Colleges and Business
schools in Jersey

0.70 3

Enjoy these pictures from the <API> Calendar() → Today is Friday, April 19, 2013. </API>
Easter Egg Hunt. 0.33 3

85 patients (23%) were hospitalised alive and admitted to a hospital ward. Of them, <API> Calcula-
tor(85 / 23)→ 3.70 </API> 65% had a cardiac aetiology [. . .]

−0.02 7

But hey, after the <API> Calendar()→ Today is Saturday, June 25, 2011. </API> Disneyland
fiasco with the fire drill, I think it’s safe to say Chewey won’t let anyone die in a fire. −0.41 7

The last time I was with <API> QA(Who was last time I was with?) → The Last Time </API>
him I asked what he likes about me and he said he would tell me one day. −1.23 7

Table 10: Examples of API calls for different tools, sorted by the value of L−
i −L

+
i that is used as a filtering

criterion. High values typically correspond to API calls that are intuitively useful for predicting future tokens.

approaches, additional information is always pro-
vided, regardless of whether it is helpful or not. In
contrast, Toolformer learns for itself to explicitly
asks for the right information.

Tool Use Several approaches aim to equip LMs
with the ability to use external tools such as search
engines (Komeili et al., 2022; Thoppilan et al.,
2022; Lazaridou et al., 2022; Shuster et al., 2022;
Yao et al., 2022), web browsers (Nakano et al.,
2021), calculators (Cobbe et al., 2021; Thoppilan
et al., 2022), translation systems (Thoppilan et al.,
2022) and Python interpreters (Gao et al., 2022).
The way these models learn to use tools can roughly
be divided into two approaches: Either they rely on
large amounts of human supervision (Komeili et al.,
2022; Nakano et al., 2021; Thoppilan et al., 2022)
or they work by prompting the language model in
a few-shot setup tailored towards a specific task
where it is known a priori which tools needs to be

used (Gao et al., 2022; Lazaridou et al., 2022; Yao
et al., 2022). In contrast, the self-supervised nature
of Toolformer enables it to learn how and when to
use tools without requiring a specific prompt that
shows task-specific examples of how a tool could
be used. Perhaps most closely related to our work
is TALM (Parisi et al., 2022), an approach that
uses a similar self-supervised objective for teach-
ing a model to use a calculator and a search engine,
but explores this only in settings where a model is
finetuned for downstream tasks.

Bootstrapping The idea of using self-training
and bootstrapping techniques to improve models
has been investigated in various contexts, rang-
ing from word sense disambiguation (Yarowsky,
1995), relation extraction (Brin, 1999; Agichtein
and Gravano, 2000), parsing (McClosky et al.,
2006; Reichart and Rappoport, 2007), sequence
generation (He et al., 2020), few-shot text classi-



fication (Schick and Schütze, 2021a) and retrieval
(Izacard and Grave, 2021) to reasoning (Zelikman
et al., 2022). In a similar spirit to these approaches,
Toolformer is trained on its own predictions after
applying a perplexity-based filtering step.

7 Limitations

While our approach enables LMs to learn how to
use a variety of tools in a self-supervised way, there
are some clear limitations to what can be achieved
with our method in its current form. One such limi-
tation is the inability of Toolformer to use tools in a
chain (i.e., using the output of one tool as an input
for another tool). This is due to the fact that API
calls for each tool are generated independently; as a
consequence, there are no examples of chained tool
use in the finetuning dataset. Our current approach
also does not allow the LM to use a tool in an in-
teractive way – especially for tools such as search
engines, that could potentially return hundreds of
different results, enabling a LM to browse through
these results or to refine its search query in a simi-
lar spirit to Nakano et al. (2021) can be crucial for
certain applications. Beyond this, we found models
trained with Toolformer to often be sensitive to the
exact wording of their input when deciding whether
or not to call an API; this is perhaps unsurprising
given that LMs are known to be very sensitive to
the prompt they are provided with in both zero-
and few-shot settings (Jiang et al., 2020; Schick
and Schütze, 2021a). Depending on the tool, our
method is also very sample-inefficient; for example,
processing more than a million documents results
in only a few thousand examples of useful calls
to the calculator API. A potential solution to this
problem might be to iteratively apply our approach,
similar to how this is done in related bootstrapping
approaches (Schick and Schütze, 2021a; Izacard
and Grave, 2021; Parisi et al., 2022). Finally, when
deciding whether or not to make an API call, Tool-
former currently does not take into account the
tool-dependent, computational cost incurred from
making an API call.

8 Conclusion

We have introduced Toolformer, a language model
that learns in a self-supervised way how to use
different tools such as search engines, calculators,
and translation systems via simple API calls. This
is done by finetuning on a large number of sampled
API calls that are filtered based on whether they

reduce perplexity on future tokens. Toolformer
considerably improves zero-shot performance of a
6.7B parameter GPT-J model, enabling it to even
outperform a much larger GPT-3 model on a range
of different downstream tasks.
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A API Details

When sampling and filtering API calls, by default
we use values of τs = 0.05 and τf = 1.0 – i.e.,
we only make API calls at positions where the
probability of the <API> token is at least 5%, and
we keep API calls if they reduce the loss by at least
1.0. We only keep the top k = 5 such positions and
sample up to m = 5 API calls for each position
identified in a piece of text. Due to the heuristic
filtering described below, we generate API calls for
the calculator and machine translation system on
only a small subset of C; to compensate for this,
we set τs = 0.0, k = 20 and m = 10 for these
tools. As the resulting sets of API calls are still
comparably small, we additionally set τf = 0.5.

A.1 Implementation
Question Answering We use the Atlas model of
Izacard et al. (2022) finetuned on Natural Ques-
tions (Kwiatkowski et al., 2019) as our question
answering system. For creating C∗ we use Atlas-
large, enabling us to efficiently process millions
of API calls; during inference, we use the larger
Atlas-xxl model.

Calculator Our calculator is based on a simple
Python script and only supports the operators “+”,
“−”, “∗”, and “/”. It does not return any result
for syntactically invalid equations. For sampling
API calls, we apply heuristic filters to our subset of
CCNet and only process documents that either (i)
contain at least three numbers within a window of
100 tokens, where one of these numbers is the result
of applying a mathematical operation to the other
two, (ii) contain one of the sequences “=”, “equals”,
“equal to”, “total of”, “average of” followed by a
number, or (iii) contain at least three numbers; for
texts that only match the last criterion, we only
keep a random subset of 1%.

Calendar For creating our dataset C∗, we operate
under the assumption that the calendar date in such
cases should be the date that the document was
created. We approximate this by extracting the date
from the URL, if it is present. We filter out texts for
which a date cannot be extracted, leaving around
18% of the documents.

Machine Translation For both training and in-
ference, we use the 600M parameter NLLB (Costa-
jussà et al., 2022) as our machine translation (MT)
model. The source language is automatically de-
tected using the fastText classifier (Joulin et al.,

2016), while the target language is always set to
English. Since most of the CCNet dataset is in
English, we filter out the parts that contain only
English text before generating API calls. More
specifically, we only keep those paragraphs which
contain text chunks in a language other than En-
glish preceded and followed by English text. We
use text chunks of size 10 tokens. To determine
whether the middle text chunk is in a language
different than English we again use the fastText
classifier with a confidence greater than 0.8. We
also filter out any text chunks that contain only
numbers or special symbols. This filtering mecha-
nism allows us to generate data more efficiently by
focusing our API call generations in places where
the MT tool is likely to be helpful. After generating
the MT API calls, we additionally remove from our
training set those where the input to the MT tool
appears after the API call but not before it. While
during data generation the model can look ahead
to generate API calls, this is not possible at infer-
ence time, so we want to dissuade the model from
calling the API in such cases.

A.2 Prompts
Below, we list the prompts used to sample API
calls for each tool considered.

Question Answering We use the following
prompt for the question answering tool:
Your task is to add calls to a Question
Answering API to a piece of text.
The questions should help you get
information required to complete the
text. You can call the API by writing
"[QA(question)]" where "question" is the
question you want to ask. Here are some
examples of API calls:
Input: Joe Biden was born in Scranton,
Pennsylvania.
Output: Joe Biden was born in [QA("Where
was Joe Biden born?")] Scranton,
[QA("In which state is Scranton?")]
Pennsylvania.

Input: Coca-Cola, or Coke, is a
carbonated soft drink manufactured by
the Coca-Cola Company.
Output: Coca-Cola, or [QA("What other
name is Coca-Cola known by?")] Coke, is
a carbonated soft drink manufactured by
[QA("Who manufactures Coca-Cola?")] the
Coca-Cola Company.

Input: x
Output:

Calculator We use the following prompt for the
calculator:
Your task is to add calls to a
Calculator API to a piece of text.



The calls should help you get
information required to complete the
text. You can call the API by writing
"[Calculator(expression)]" where
"expression" is the expression to be
computed. Here are some examples of API
calls:
Input: The number in the next term is 18
+ 12 x 3 = 54.
Output: The number in the next term is
18 + 12 x 3 = [Calculator(18 + 12 * 3)]
54.

Input: The population is 658,893 people.
This is 11.4% of the national average of
5,763,868 people.
Output: The population is 658,893 people.
This is 11.4% of the national average of
[Calculator(658,893 / 11.4%)] 5,763,868
people.

Input: A total of 252 qualifying matches
were played, and 723 goals were scored
(an average of 2.87 per match). This is
three times less than the 2169 goals
last year.
Output: A total of 252 qualifying
matches were played, and 723 goals were
scored (an average of [Calculator(723
/ 252)] 2.87 per match). This is twenty
goals more than the [Calculator(723 -
20)] 703 goals last year.

Input: I went to Paris in 1994 and
stayed there until 2011, so in total,
it was 17 years.
Output: I went to Paris in 1994 and
stayed there until 2011, so in total, it
was [Calculator(2011 - 1994)] 17 years.

Input: From this, we have 4 * 30 minutes
= 120 minutes.
Output: From this, we have 4 * 30
minutes = [Calculator(4 * 30)] 120
minutes.

Input: x
Output:

Wikipedia Search We use the following prompt
for the Wikipedia search tool:
Your task is to complete a given piece
of text. You can use a Wikipedia Search
API to look up information. You can do
so by writing "[WikiSearch(term)]" where
"term" is the search term you want to
look up. Here are some examples of API
calls:
Input: The colors on the flag of Ghana
have the following meanings: red is for
the blood of martyrs, green for forests,
and gold for mineral wealth.
Output: The colors on the flag of Ghana
have the following meanings: red is for
[WikiSearch("Ghana flag red meaning")]
the blood of martyrs, green for forests,
and gold for mineral wealth.

Input: But what are the risks during
production of nanomaterials? Some

nanomaterials may give rise to various
kinds of lung damage.
Output: But what are the risks
during production of nanomaterials?
[WikiSearch("nanomaterial production
risks")] Some nanomaterials may give
rise to various kinds of lung damage.

Input: Metformin is the first-line drug
for patients with type 2 diabetes and
obesity.
Output: Metformin is the first-line drug
for [WikiSearch("Metformin first-line
drug")] patients with type 2 diabetes
and obesity.

Input: x
Output:

Machine Translation We use the following
prompt for the machine translation tool:
Your task is to complete a given piece
of text by using a Machine Translation
API.
You can do so by writing "[MT(text)]"
where text is the text to be translated
into English.
Here are some examples:

Input: He has published one book: O
homem suprimido (“The Supressed Man”)
Output: He has published one book: O
homem suprimido [MT(O homem suprimido)]
(“The Supressed Man”)

Input: In Morris de Jonge’s Jeschuah,
der klassische jüdische Mann, there is a
description of a Jewish writer
Output: In Morris de Jonge’s Jeschuah,
der klassische jüdische Mann [MT(der
klassische jüdische Mann)], there is a
description of a Jewish writer

Input: 南京高淳县住房和城乡建设局 城市新
区 设 计 a plane of reference Gaochun is
one of seven districts of the provincial
capital Nanjing
Output: [MT(南京高淳县住房和城乡建设局 城市新
区 设 计)] a plane of reference Gaochun is
one of seven districts of the provincial
capital Nanjing

Input: x
Output:

Calendar We use the following prompt for the
calendar tool:
Your task is to add calls to a Calendar
API to a piece of text. The API calls
should help you get information required
to complete the text. You can call the
API by writing "[Calendar()]" Here are
some examples of API calls:

Input: Today is the first Friday of the
year.
Output: Today is the first [Calendar()]
Friday of the year.



Input: The president of the United
States is Joe Biden.
Output: The president of the United
States is [Calendar()] Joe Biden.

Input: The current day of the week is
Wednesday.
Output: The current day of the week is
[Calendar()] Wednesday.

Input: The number of days from now until
Christmas is 30.
Output: The number of days from now
until Christmas is [Calendar()] 30.

Input: The store is never open on the
weekend, so today it is closed.
Output: The store is never open on the
weekend, so today [Calendar()] it is
closed.

Input: x
Output:

B Toolformer Training

We use up to 25k examples per API. Max sequence
length 1,024. Effective batch size of 128. All mod-
els are trained using DeepSpeed’s ZeRO-3 (Rasley
et al., 2020). We used 8 NVIDIA A100 40GB
GPUs with BF16. Training up to 2k steps, where
we evaluate PPL on a small development set from
CCNet containing 1,000 examples every 500 steps.
We pick the checkpoint that performs best.

C Zero-Shot Prompts

C.1 LAMA and TEMPLAMA
For both LAMA and TEMPLAMA, given an input
text x, we use the following prompt: Please
complete the following text so
that it is factually correct: x.

C.2 Math Benchmarks
For all math benchmarks, given a context x and
a question q, our prompt is: x q The answer
is.

C.3 Question Answering
For all question answering datasets, including
DATESET, we simply prefix the question with
Answer the following question:. We
append a question mark if the question does not
already end with one.

C.4 Multilingual Question Answering
For MLQA, given a context x and a ques-
tion q, our prompt is: Your task is

Template Size

How many days {ago was, are there until}
{past_date, future_date}?

400

What {day of the week, day of the month, month,
year} was it (current_date – past_date) {days,
weeks, months, years} ago?

800

What {day of the week, day of the month, month,
year} will it be in (future_date – current_date)
days?

800

What day of the week {is, was} it on {past_date,
future_date}?

400

What {day of the week, day of the month, month,
year} {is, was} it {the day before yesterday, yes-
terday, today, tomorrow, the day after tomorrow}?

4,000

What {day of the week, day of the month, month}
{is, was} holiday this year?

1,800

How many {days, weeks, months, years} {ago
was, are there until} holiday this year?

1,200

Total 9,400

Table 11: Templates used to create DATESET where
a current_date is randomly selected. For each cur-
rent_date, a random past_date and future_date is gen-
erated and used to fill each template, if relevant. The
federal holidays in the United States (e.g., Thanksgiv-
ing) were used in the templates involving holidays.

to answer a question based on
the following paragraph: x Now
answer the following question in
English: q.

D DATESET

DATESET is created by first randomly selecting 500
“current dates”. For each current date, another rela-
tively past/future date is randomly selected within
a four-year range, and the two dates are used to fill
the query templates in Table 11. An example of one
such query using the first template would be, “How
many days ago was August 14, 2020?” If called,
the Calendar tool would return the presumed cur-
rent date (e.g., “Today is Sunday, November 20,
2020”).


