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Abstract

Language models (LMs) exhibit remarkable
abilities to solve new tasks from just a few
examples or textual instructions, especially at
scale. They also, paradoxically, struggle with
basic functionality, such as arithmetic or fac-
tual lookup, where much simpler and smaller
models excel. In this paper, we show that
LMs can teach themselves to use external tools
via simple APIs and achieve the best of both
worlds. We introduce Toolformer, a model
trained to decide which APIs to call, when to
call them, what arguments to pass, and how to
best incorporate the results into future token
prediction. This is done in a self-supervised
way, requiring nothing more than a handful of
demonstrations for each API. We incorporate
a range of tools, including a calculator, a Q&A
system, a search engine, a translation system,
and a calendar. Toolformer achieves substan-
tially improved zero-shot performance across
a variety of downstream tasks, often competi-
tive with much larger models, without sacrific-
ing its core language modeling abilities.

1 Introduction

Large language models achieve impressive zero-
and few-shot results on a variety of natural lan-
guage processing tasks (Brown et al., 2020; Chowd-
hery et al., 2022, i.a.) and show several emergent
capabilities (Wei et al., 2022). However, all of
these models have several inherent limitations that
can at best be partially addressed by further scal-
ing. These limitations include an inability to access
up-to-date information on recent events (Komeili
et al., 2022) and the related tendency to hallucinate
facts (Maynez et al., 2020; Ji et al., 2022), difficul-
ties in understanding low-resource languages (Lin
et al., 2021), a lack of mathematical skills to per-
form precise calculations (Patel et al., 2021) and an
unawareness of the progression of time (Dhingra
et al., 2022).

The New England Journal of Medicine is a registered 
trademark of [QA(“Who is the publisher of The New 
England Journal of Medicine?”) → Massachusetts 
Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) 
→ 0.29] 29%) passed the test. 

The name derives from “la tortuga”, the Spanish word for 
[MT(“tortuga”) → turtle] turtle.

The Brown Act is California’s law [WikiSearch(“Brown 
Act”) → The Ralph M. Brown Act is an act of the 
California State Legislature that guarantees the public's 
right to attend and participate in meetings of local 
legislative bodies.] that requires legislative bodies, like 
city councils, to hold their meetings open to the public.

Figure 1: Exemplary predictions of Toolformer. The
model autonomously decides to call different APIs
(from top to bottom: a question answering system,
a calculator, a machine translation system, and a
Wikipedia search engine) to obtain information that is
useful for completing a piece of text.

A simple way to overcome these limitations of
today’s language models is to give them the abil-
ity to use external tools such as search engines,
calculators, or calendars. However, existing ap-
proaches either rely on large amounts of human
annotations (Komeili et al., 2022; Thoppilan et al.,
2022) or limit tool use to task-specific settings only
(e.g., Gao et al., 2022; Parisi et al., 2022), hinder-
ing a more widespread adoption of tool use in LMs.
Therefore, we propose Toolformer, a model that
learns to use tools in a novel way, which fulfills the
following desiderata:

• The use of tools should be learned in a
self-supervised way without requiring large
amounts of human annotations. This is impor-
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x1:i-1  = Pittsburgh is 
             also known as

   xi:n = the Steel City

x* = Pittsburgh is 
        also known as
        [QA(What …? 
        → Steel City)] 
        the Steel City.

ci
1 = What other name is 

         Pittsburgh known by?

ci
2 = Which country is

         Pittsburgh in?

ri
1 = Steel City 

ri
2 = United States

Li(ci
1 → Steel City)

 < min(Li(ci
1 → ε), Li(ε))

Li(ci
2 → United States)

 > min(Li(ci
2 → ε), Li(ε))

1 
Sample API Calls

2 
Execute API Calls

3 
Filter API CallsLM Dataset LM Dataset 

with API Calls

Figure 2: Key steps in our approach, illustrated for a question answering tool: Given an input text x, we first
sample a position i and corresponding API call candidates c1i , c

2
i , . . . , c

k
i . We then execute these API calls and

filter out all calls which do not reduce the loss Li over the next tokens. All remaining API calls are interleaved
with the original text, resulting in a new text x∗.

tant not only because of the costs associated
with such annotations, but also because what
humans find useful may be different from
what a model finds useful.

• The LM should not lose any of its generality
and should be able to decide for itself when
and how to use which tool. In contrast to
existing approaches, this enables a much more
comprehensive use of tools that is not tied to
specific tasks.

Our approach for achieving these goals is based
on the recent idea of using large LMs with in-
context learning (Brown et al., 2020) to generate
entire datasets from scratch (Schick and Schütze,
2021b; Honovich et al., 2022; Wang et al., 2022):
Given just a handful of human-written examples
of how an API can be used, we let a LM annotate
a huge language modeling dataset with potential
API calls. We then use a self-supervised loss to
determine which of these API calls actually help
the model in predicting future tokens. Finally, we
finetune the LM itself on the API calls that it con-
siders useful. As illustrated in Figure 1, through
this simple approach, LMs can learn to control a va-
riety of tools, and to choose for themselves which
tool to use when and how.

As our approach is agnostic of the dataset be-
ing used, we can apply it to the exact same dataset
that was used to pretrain a model in the first place.
This ensures that the model does not lose any
of its generality and language modeling abilities.
We conduct experiments on a variety of differ-
ent downstream tasks, demonstrating that after
learning to use tools, Toolformer, which is based
on a pretrained GPT-J model (Wang and Komat-
suzaki, 2021) with 6.7B parameters, achieves much
stronger zero-shot results, clearly outperforming a
much larger GPT-3 model (Brown et al., 2020) and

several other baselines on various tasks.

2 Approach

Our aim is to equip a language model M with the
ability to use different tools by means of API calls.
We require that inputs and outputs for each API
can be represented as text sequences. This allows
seamless insertion of API calls into any given text,
using special tokens to mark the start and end of
each such call.

We represent each API call as a tuple c = (ac, ic)
where ac is the name of the API and ic is the cor-
responding input. Given an API call c with a cor-
responding result r, we denote the linearized se-
quences of the API call not including and including
its result, respectively, as:

e(c) = <API> ac(ic)</API>

e(c, r) = <API> ac(ic)→ r </API>

where “<API>”, “</API>” and “→” are special
tokens.1 Some examples of linearized API calls
inserted into text sequences are shown in Figure 1.

Given a dataset C = {x1, . . . ,x|C|} of plain
texts, we first convert this dataset into a dataset
C∗ augmented with API calls. This is done in three
steps, illustrated in Figure 2: First, we exploit the
in-context learning ability of M to sample a large
number of potential API calls. We then execute
these API calls and finally check whether the ob-
tained responses are helpful for predicting future
tokens; this is used as a filtering criterion. After
filtering, we merge API calls for different tools,
resulting in the augmented dataset C∗, and finetune

1In practice, we use the token sequences “ [”, “]” and
“->” to represent “<API>”, “</API>” and “→”, respec-
tively. This enables our approach to work without modifying
the existing LM’s vocabulary. For reasons of readability, we
still refer to them as “<API>”, “</API>” and “→” through-
out this section.



Your task is to add calls to a Question Answering API to a 
piece of text. The questions should help you get 
information required to complete the text. You can call the 
API by writing "[QA(question)]" where "question" is the 
question you want to ask. Here are some examples of API 
calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe 
Biden born?")] Scranton, [QA("In which state is 
Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink 
manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is 
Coca-Cola known by?")] Coke, is a carbonated soft drink 
manufactured by [QA("Who manufactures Coca-Cola?")] 
the Coca-Cola Company.

Input: x

Output:

Figure 3: An exemplary prompt P (x) used to generate
API calls for the question answering tool.

M itself on this dataset. Each of these steps is
described in more detail below.

Sampling API Calls For each API, we write a
prompt P (x) that encourages the LM to anno-
tate an example x = x1, . . . , xn with API calls.
An example of such a prompt for a question an-
swering tool is shown in Figure 3; all prompts
used are shown in Appendix A.2. Let pM (zn+1 |
z1, . . . , zn) be the probability that M assigns to
token zn+1 as a continuation for the sequence
z1, . . . , zn. We first sample up to k candidate posi-
tions for doing API calls by computing, for each
i ∈ {1, . . . , n}, the probability

pi = pM (<API> | P (x), x1:i−1)

that M assigns to starting an API call at position
i. Given a sampling threshold τs, we keep all po-
sitions I = {i | pi > τs}; if there are more than k
such positions, we only keep the top k.

For each position i ∈ I , we then obtain up to m
API calls c1i , . . . , c

m
i by sampling fromM given the

sequence [P (x), x1, . . . , xi−1,<API>] as a prefix
and </API> as an end-of-sequence token.2

2We discard all examples where M does not generate the
</API> token.

Executing API Calls As a next step, we execute
all API calls generated by M to obtain the corre-
sponding results. How this is done depends entirely
on the API itself – for example, it can involve call-
ing another neural network, executing a Python
script or using a retrieval system to perform search
over a large corpus. The response for each API call
ci needs to be a single text sequence ri.

Filtering API Calls Let i be the position of the
API call ci in the sequence x = x1, . . . , xn, and let
ri be the response from the API. Further, given a
sequence (wi | i ∈ N) of weights, let

Li(z) = −
n∑

j=i

wj−i · log pM (xj | z, x1:j−1)

be the weighted cross entropy loss for M over the
tokens xi, . . . , xn if the model is prefixed with z.
We compare two different instantiations of this loss:

L+
i = Li(e(ci, ri))

L−i = min (Li(ε), Li(e(ci, ε)))

where ε denotes an empty sequence. The former is
the weighted loss over all tokens xi, . . . , xn if the
API call and its result are given to M as a prefix;3

the latter is the minimum of the losses obtained
from (i) doing no API call at all and (ii) doing an
API call, but not providing the response. Intuitively,
an API call is helpful toM if providing it with both
the input and the output of this call makes it easier
for the model to predict future tokens, compared to
not receiving the API call at all, or receiving only
its input. Given a filtering threshold τf , we thus
only keep API calls for which

L−i − L
+
i ≥ τf

holds, i.e., adding the API call and its result reduces
the loss by at least τf , compared to not doing any
API call or obtaining no result from it.

Model Finetuning After sampling and filtering
calls for all APIs, we finally merge the remaining
API calls and interleave them with the original
inputs. That is, for an input text x = x1, . . . , xn
with a corresponding API call and result (ci, ri) at
position i, we construct the new sequence x∗ =

3We provide e(ci, ri) as a prefix instead of inserting it at
position i because M is not yet finetuned on any examples
containing API calls, so inserting it in the middle of x would
interrupt the flow and not align with patterns in the pretraining
corpus, thus hurting perplexity.


