--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: videomae-base-finetuned-ucf-crimevbinary-balanced-vwandb results: [] --- # videomae-base-finetuned-ucf-crimevbinary-balanced-vwandb This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2106 - Accuracy: 0.9444 - Precision: 0.9444 - Recall: 0.9444 - Auc: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6542 | 1.0 | 29 | 0.6413 | 0.6389 | 0.7217 | 0.6389 | 0.8056 | | 0.574 | 2.0 | 58 | 0.5412 | 0.75 | 0.7945 | 0.75 | 0.8827 | | 0.4214 | 3.0 | 87 | 0.4414 | 0.8611 | 0.8714 | 0.8611 | 0.9228 | | 0.4331 | 4.0 | 116 | 0.4604 | 0.8056 | 0.8311 | 0.8056 | 0.8889 | | 0.2981 | 5.0 | 145 | 0.3923 | 0.8889 | 0.8937 | 0.8889 | 0.9321 | | 0.2615 | 6.0 | 174 | 0.5136 | 0.8333 | 0.8506 | 0.8333 | 0.8735 | | 0.1896 | 7.0 | 203 | 0.4989 | 0.8889 | 0.9091 | 0.8889 | 0.9105 | | 0.5031 | 8.0 | 232 | 0.3814 | 0.9167 | 0.9180 | 0.9167 | 0.9321 | | 0.0947 | 9.0 | 261 | 0.4635 | 0.8889 | 0.8937 | 0.8889 | 0.9290 | | 0.3865 | 10.0 | 290 | 0.5199 | 0.8889 | 0.9091 | 0.8889 | 0.8951 | | 0.187 | 11.0 | 319 | 0.6748 | 0.8611 | 0.8622 | 0.8611 | 0.9136 | | 0.0408 | 12.0 | 348 | 1.0193 | 0.8056 | 0.8143 | 0.8056 | 0.9012 | | 0.3851 | 13.0 | 377 | 0.3708 | 0.8889 | 0.8889 | 0.8889 | 0.9630 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3