--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model_index: - name: finetuned-bert results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metric: name: F1 type: f1 value: 0.9125214408233276 base_model: bert-base-cased --- # finetuned-bert This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3916 - Accuracy: 0.875 - F1: 0.9125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.581 | 1.0 | 230 | 0.4086 | 0.8260 | 0.8711 | | 0.366 | 2.0 | 460 | 0.3758 | 0.8480 | 0.8963 | | 0.2328 | 3.0 | 690 | 0.3916 | 0.875 | 0.9125 | ### Framework versions - Transformers 4.9.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 1.8.1.dev0 - Tokenizers 0.10.1