sgoodfriend's picture
PPO playing HalfCheetahBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
f050c92
raw
history blame
6.48 kB
import dataclasses
import inspect
import itertools
import os
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Dict, List, Optional, Type, TypeVar, Union
RunArgsSelf = TypeVar("RunArgsSelf", bound="RunArgs")
@dataclass
class RunArgs:
algo: str
env: str
seed: Optional[int] = None
use_deterministic_algorithms: bool = True
@classmethod
def expand_from_dict(
cls: Type[RunArgsSelf], d: Dict[str, Any]
) -> List[RunArgsSelf]:
maybe_listify = lambda v: [v] if isinstance(v, str) or isinstance(v, int) else v
algos = maybe_listify(d["algo"])
envs = maybe_listify(d["env"])
seeds = maybe_listify(d["seed"])
args = []
for algo, env, seed in itertools.product(algos, envs, seeds):
_d = d.copy()
_d.update({"algo": algo, "env": env, "seed": seed})
args.append(cls(**_d))
return args
@dataclass
class EnvHyperparams:
env_type: str = "gymvec"
n_envs: int = 1
frame_stack: int = 1
make_kwargs: Optional[Dict[str, Any]] = None
no_reward_timeout_steps: Optional[int] = None
no_reward_fire_steps: Optional[int] = None
vec_env_class: str = "sync"
normalize: bool = False
normalize_kwargs: Optional[Dict[str, Any]] = None
rolling_length: int = 100
train_record_video: bool = False
video_step_interval: Union[int, float] = 1_000_000
initial_steps_to_truncate: Optional[int] = None
clip_atari_rewards: bool = True
normalize_type: Optional[str] = None
mask_actions: bool = False
bots: Optional[Dict[str, int]] = None
self_play_kwargs: Optional[Dict[str, Any]] = None
selfplay_bots: Optional[Dict[str, int]] = None
HyperparamsSelf = TypeVar("HyperparamsSelf", bound="Hyperparams")
@dataclass
class Hyperparams:
device: str = "auto"
n_timesteps: Union[int, float] = 100_000
env_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict)
policy_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict)
algo_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict)
eval_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict)
env_id: Optional[str] = None
additional_keys_to_log: List[str] = dataclasses.field(default_factory=list)
microrts_reward_decay_callback: bool = False
@classmethod
def from_dict_with_extra_fields(
cls: Type[HyperparamsSelf], d: Dict[str, Any]
) -> HyperparamsSelf:
return cls(
**{k: v for k, v in d.items() if k in inspect.signature(cls).parameters}
)
@dataclass
class Config:
args: RunArgs
hyperparams: Hyperparams
root_dir: str
run_id: str = datetime.now().isoformat()
def seed(self, training: bool = True) -> Optional[int]:
seed = self.args.seed
if training or seed is None:
return seed
return seed + self.env_hyperparams.get("n_envs", 1)
@property
def device(self) -> str:
return self.hyperparams.device
@property
def n_timesteps(self) -> int:
return int(self.hyperparams.n_timesteps)
@property
def env_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.env_hyperparams
@property
def policy_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.policy_hyperparams
@property
def algo_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.algo_hyperparams
@property
def eval_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.eval_hyperparams
def eval_callback_params(self) -> Dict[str, Any]:
eval_hyperparams = self.eval_hyperparams.copy()
if "env_overrides" in eval_hyperparams:
del eval_hyperparams["env_overrides"]
return eval_hyperparams
@property
def algo(self) -> str:
return self.args.algo
@property
def env_id(self) -> str:
return self.hyperparams.env_id or self.args.env
@property
def additional_keys_to_log(self) -> List[str]:
return self.hyperparams.additional_keys_to_log
def model_name(self, include_seed: bool = True) -> str:
# Use arg env name instead of environment name
parts = [self.algo, self.args.env]
if include_seed and self.args.seed is not None:
parts.append(f"S{self.args.seed}")
# Assume that the custom arg name already has the necessary information
if not self.hyperparams.env_id:
make_kwargs = self.env_hyperparams.get("make_kwargs", {})
if make_kwargs:
for k, v in make_kwargs.items():
if type(v) == bool and v:
parts.append(k)
elif type(v) == int and v:
parts.append(f"{k}{v}")
else:
parts.append(str(v))
return "-".join(parts)
def run_name(self, include_seed: bool = True) -> str:
parts = [self.model_name(include_seed=include_seed), self.run_id]
return "-".join(parts)
@property
def saved_models_dir(self) -> str:
return os.path.join(self.root_dir, "saved_models")
@property
def downloaded_models_dir(self) -> str:
return os.path.join(self.root_dir, "downloaded_models")
def model_dir_name(
self,
best: bool = False,
extension: str = "",
) -> str:
return self.model_name() + ("-best" if best else "") + extension
def model_dir_path(self, best: bool = False, downloaded: bool = False) -> str:
return os.path.join(
self.saved_models_dir if not downloaded else self.downloaded_models_dir,
self.model_dir_name(best=best),
)
@property
def runs_dir(self) -> str:
return os.path.join(self.root_dir, "runs")
@property
def tensorboard_summary_path(self) -> str:
return os.path.join(self.runs_dir, self.run_name())
@property
def logs_path(self) -> str:
return os.path.join(self.runs_dir, f"log.yml")
@property
def videos_dir(self) -> str:
return os.path.join(self.root_dir, "videos")
@property
def video_prefix(self) -> str:
return os.path.join(self.videos_dir, self.model_name())
@property
def best_videos_dir(self) -> str:
return os.path.join(self.videos_dir, f"{self.model_name()}-best")