# Support for PyTorch mps mode (https://pytorch.org/docs/stable/notes/mps.html) import os os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" import itertools from argparse import Namespace from multiprocessing import Pool from typing import Any, Dict from runner.running_utils import base_parser from runner.train import train, TrainArgs def args_dict(algo: str, env: str, seed: str, args: Namespace) -> Dict[str, Any]: d = vars(args).copy() d.update( { "algo": algo, "env": env, "seed": seed, } ) return d if __name__ == "__main__": parser = base_parser() parser.add_argument( "--wandb-project-name", type=str, default="rl-algo-impls", help="WandB project namme to upload training data to. If none, won't upload.", ) parser.add_argument( "--wandb-entity", type=str, default=None, help="WandB team of project. None uses default entity", ) parser.add_argument( "--wandb-tags", type=str, nargs="*", help="WandB tags to add to run" ) parser.add_argument( "--pool-size", type=int, default=1, help="Simultaneous training jobs to run" ) parser.set_defaults( algo="ppo", env="MountainCarContinuous-v0", seed=[1, 2, 3], pool_size=3, ) args = parser.parse_args() print(args) if args.pool_size == 1: from pyvirtualdisplay.display import Display virtual_display = Display(visible=False, size=(1400, 900)) virtual_display.start() # pool_size isn't a TrainArg so must be removed from args pool_size = args.pool_size delattr(args, "pool_size") algos = args.algo if isinstance(args.algo, list) else [args.algo] envs = args.env if isinstance(args.env, list) else [args.env] seeds = args.seed if isinstance(args.seed, list) else [args.seed] if all(len(arg) == 1 for arg in [algos, envs, seeds]): train(TrainArgs(**args_dict(algos[0], envs[0], seeds[0], args))) else: # Force a new process for each job to get around wandb not allowing more than one # wandb.tensorboard.patch call per process. with Pool(pool_size, maxtasksperchild=1) as p: train_args = [ TrainArgs(**args_dict(algo, env, seed, args)) for algo, env, seed in itertools.product(algos, envs, seeds) ] p.map(train, train_args)