--- language: - ru pipeline_tag: sentence-similarity tags: - russian - pretraining - embeddings - feature-extraction - sentence-similarity - sentence-transformers - transformers license: mit base_model: cointegrated/LaBSE-en-ru --- ## Базовый Bert для Semantic text similarity (STS) на GPU Качественная модель BERT для расчетов эмбедингов предложений на русском языке. Модель основана на [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) - имеет аналогичные размеры контекста (512), ембединга (768) и быстродействие. Является второй и лучшей по качеству моделью в серии BERT-sts. На STS и близких задачах (PI, NLI, SA, TI) для русского языка конкурирует по качеству с моделью [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) (но потребляет на 77% меньше памяти и быстрее на 80%). ## Лучшая модель для использования в составе RAG LLMs при инференсе на GPU: - отличный метрики на задачах STS, PI, NLI обеспечивают высокое качество при нечетких запросах; - средние показатели на задачах SA, TI снижают влияние авторского стиля и личного отношения автора на ембединг; - высокая скорость работы на GPU (> 1k предложений в секунду) позволяет легко расширять базу текстовых документов; - пониженная размерность эмбединга (768) ускоряет дальнейшую работу алгоритмов knn при поиске соответствий; - совместимость с [SentenceTransformer](https://github.com/UKPLab/sentence-transformers) позволяет проверить модель на своих данных с минимальным объемом кода. ## Использование модели с библиотекой `transformers`: ```python # pip install transformers sentencepiece import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("sergeyzh/LaBSE-ru-sts") model = AutoModel.from_pretrained("sergeyzh/LaBSE-ru-sts") # model.cuda() # uncomment it if you have a GPU def embed_bert_cls(text, model, tokenizer): t = tokenizer(text, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**{k: v.to(model.device) for k, v in t.items()}) embeddings = model_output.last_hidden_state[:, 0, :] embeddings = torch.nn.functional.normalize(embeddings) return embeddings[0].cpu().numpy() print(embed_bert_cls('привет мир', model, tokenizer).shape) # (768,) ``` ## Использование с `sentence_transformers`: ```Python from sentence_transformers import SentenceTransformer, util model = SentenceTransformer('sergeyzh/LaBSE-ru-sts') sentences = ["привет мир", "hello world", "здравствуй вселенная"] embeddings = model.encode(sentences) print(util.dot_score(embeddings, embeddings)) ``` ## Метрики Оценки модели на бенчмарке [encodechka](https://github.com/avidale/encodechka): | Модель | STS | PI | NLI | SA | TI | |:---------------------------------|:---------:|:---------:|:---------:|:---------:|:---------:| | [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 0.862 | 0.727 | 0.473 | 0.810 | 0.979 | | **sergeyzh/LaBSE-ru-sts** | **0.845** | **0.737** | **0.481** | **0.805** | **0.957** | | [sergeyzh/rubert-tiny-sts](https://huggingface.co/sergeyzh/rubert-tiny-sts) | 0.797 | 0.702 | 0.453 | 0.778 | 0.946 | | [Tochka-AI/ruRoPEBert-e5-base-512](https://huggingface.co/Tochka-AI/ruRoPEBert-e5-base-512) | 0.793 | 0.704 | 0.457 | 0.803 | 0.970 | | [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) | 0.794 | 0.659 | 0.431 | 0.761 | 0.946 | | [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) | 0.750 | 0.651 | 0.417 | 0.737 | 0.937 | **Задачи:** - Semantic text similarity (**STS**); - Paraphrase identification (**PI**); - Natural language inference (**NLI**); - Sentiment analysis (**SA**); - Toxicity identification (**TI**). ## Быстродействие и размеры На бенчмарке [encodechka](https://github.com/avidale/encodechka): | Модель | CPU | GPU | size | dim | n_ctx | n_vocab | |:---------------------------------|----------:|----------:|----------:|----------:|----------:|----------:| | [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 149.026 | 15.629 | 2136 | 1024 | 514 | 250002 | | **sergeyzh/LaBSE-ru-sts** |**42.835** | **8.561** | **490** | **768** | **512** | **55083** | | [sergeyzh/rubert-tiny-sts](https://huggingface.co/sergeyzh/rubert-tiny-sts) | 3.208 | 3.379 | 111 | 312 | 2048 | 83828 | | [Tochka-AI/ruRoPEBert-e5-base-512](https://huggingface.co/Tochka-AI/ruRoPEBert-e5-base-512) | 43.314 | 9.338 | 532 | 768 | 512 | 69382 | | [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) | 42.867 | 8.549 | 490 | 768 | 512 | 55083 | | [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) | 3.212 | 3.384 | 111 | 312 | 2048 | 83828 | При использовании батчей с `sentence_transformers`: ```python from sentence_transformers import SentenceTransformer model_name = 'sergeyzh/LaBSE-ru-sts' model = SentenceTransformer(model_name, device='cpu') sentences = ["Тест быстродействия на CPU Ryzen 7 3800X: batch = 50"] * 50 %timeit -n 5 -r 3 model.encode(sentences) # 882 ms ± 104 ms per loop (mean ± std. dev. of 3 runs, 5 loops each) # 50/0.882 = 57 snt/s model = SentenceTransformer(model_name, device='cuda') sentences = ["Тест быстродействия на GPU RTX 3060: batch = 1500"] * 1500 %timeit -n 5 -r 3 model.encode(sentences) # 792 ms ± 29 ms per loop (mean ± std. dev. of 3 runs, 5 loops each) # 1500/0.792 = 1894 snt/s ``` ## Связанные ресурсы Вопросы использования модели обсуждаются в [русскоязычном чате NLP](https://t.me/natural_language_processing).