import torch import numpy as np from torchaudio import functional as F from transformers.pipelines.audio_utils import ffmpeg_read from starlette import HTTPException import sys # Code from insanely-fast-whisper: # https://github.com/Vaibhavs10/insanely-fast-whisper import logging logger = logging.getLogger(__name__) def preprocess_inputs(inputs, sampling_rate): inputs = ffmpeg_read(inputs, sampling_rate) if sampling_rate != 16000: inputs = F.resample( torch.from_numpy(inputs), sampling_rate, 16000 ).numpy() if len(inputs.shape) != 1: logger.error(f"Diarization pipeline expecs single channel audio, received {inputs.shape}") raise HTTPException( status_code=400, detail=f"Diarization pipeline expecs single channel audio, received {inputs.shape}" ) # diarization model expects float32 torch tensor of shape `(channels, seq_len)` diarizer_inputs = torch.from_numpy(inputs).float() diarizer_inputs = diarizer_inputs.unsqueeze(0) return inputs, diarizer_inputs def diarize_audio(diarizer_inputs, diarization_pipeline, parameters): diarization = diarization_pipeline( {"waveform": diarizer_inputs, "sample_rate": parameters.sampling_rate}, num_speakers=parameters.num_speakers, min_speakers=parameters.min_speakers, max_speakers=parameters.max_speakers, ) segments = [] for segment, track, label in diarization.itertracks(yield_label=True): segments.append( { "segment": {"start": segment.start, "end": segment.end}, "track": track, "label": label, } ) # diarizer output may contain consecutive segments from the same speaker (e.g. {(0 -> 1, speaker_1), (1 -> 1.5, speaker_1), ...}) # we combine these segments to give overall timestamps for each speaker's turn (e.g. {(0 -> 1.5, speaker_1), ...}) new_segments = [] prev_segment = cur_segment = segments[0] for i in range(1, len(segments)): cur_segment = segments[i] # check if we have changed speaker ("label") if cur_segment["label"] != prev_segment["label"] and i < len(segments): # add the start/end times for the super-segment to the new list new_segments.append( { "segment": { "start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["start"], }, "speaker": prev_segment["label"], } ) prev_segment = segments[i] # add the last segment(s) if there was no speaker change new_segments.append( { "segment": { "start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["end"], }, "speaker": prev_segment["label"], } ) return new_segments def post_process_segments_and_transcripts(new_segments, transcript, group_by_speaker) -> list: # get the end timestamps for each chunk from the ASR output end_timestamps = np.array( [chunk["timestamp"][-1] if chunk["timestamp"][-1] is not None else sys.float_info.max for chunk in transcript]) segmented_preds = [] # align the diarizer timestamps and the ASR timestamps for segment in new_segments: # get the diarizer end timestamp end_time = segment["segment"]["end"] # find the ASR end timestamp that is closest to the diarizer's end timestamp and cut the transcript to here upto_idx = np.argmin(np.abs(end_timestamps - end_time)) if group_by_speaker: segmented_preds.append( { "speaker": segment["speaker"], "text": "".join( [chunk["text"] for chunk in transcript[: upto_idx + 1]] ), "timestamp": ( transcript[0]["timestamp"][0], transcript[upto_idx]["timestamp"][1], ), } ) else: for i in range(upto_idx + 1): segmented_preds.append({"speaker": segment["speaker"], **transcript[i]}) # crop the transcripts and timestamp lists according to the latest timestamp (for faster argmin) transcript = transcript[upto_idx + 1:] end_timestamps = end_timestamps[upto_idx + 1:] if len(end_timestamps) == 0: break return segmented_preds def diarize(diarization_pipeline, file, parameters, asr_outputs): _, diarizer_inputs = preprocess_inputs(file, parameters.sampling_rate) segments = diarize_audio( diarizer_inputs, diarization_pipeline, parameters ) return post_process_segments_and_transcripts( segments, asr_outputs["chunks"], group_by_speaker=False )