--- library_name: transformers license: mit base_model: xlnet/xlnet-base-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: UIT-NO-PRExlnet-base-cased-finetuned results: [] --- # UIT-NO-PRExlnet-base-cased-finetuned This model is a fine-tuned version of [xlnet/xlnet-base-cased](https://huggingface.co/xlnet/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6397 - F1: 0.7187 - Roc Auc: 0.7856 - Accuracy: 0.4531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.5578 | 1.0 | 139 | 0.5043 | 0.3149 | 0.5892 | 0.2022 | | 0.4414 | 2.0 | 278 | 0.4142 | 0.6034 | 0.7089 | 0.3827 | | 0.3813 | 3.0 | 417 | 0.3941 | 0.6657 | 0.7419 | 0.4061 | | 0.2291 | 4.0 | 556 | 0.4109 | 0.6806 | 0.7463 | 0.4260 | | 0.23 | 5.0 | 695 | 0.4438 | 0.6914 | 0.7605 | 0.4386 | | 0.15 | 6.0 | 834 | 0.4506 | 0.7001 | 0.7664 | 0.4513 | | 0.1324 | 7.0 | 973 | 0.4842 | 0.6910 | 0.7646 | 0.4603 | | 0.0803 | 8.0 | 1112 | 0.5092 | 0.7164 | 0.7915 | 0.4513 | | 0.0772 | 9.0 | 1251 | 0.5448 | 0.7000 | 0.7734 | 0.4404 | | 0.0459 | 10.0 | 1390 | 0.5791 | 0.6958 | 0.7693 | 0.4332 | | 0.0308 | 11.0 | 1529 | 0.5954 | 0.7102 | 0.7836 | 0.4386 | | 0.0343 | 12.0 | 1668 | 0.6288 | 0.7030 | 0.7780 | 0.4350 | | 0.0254 | 13.0 | 1807 | 0.6397 | 0.7187 | 0.7856 | 0.4531 | | 0.0269 | 14.0 | 1946 | 0.6693 | 0.6932 | 0.7705 | 0.4368 | | 0.0144 | 15.0 | 2085 | 0.6778 | 0.6949 | 0.7711 | 0.4386 | | 0.0104 | 16.0 | 2224 | 0.7106 | 0.6943 | 0.7684 | 0.4368 | | 0.006 | 17.0 | 2363 | 0.7217 | 0.7053 | 0.7749 | 0.4422 | | 0.0109 | 18.0 | 2502 | 0.7313 | 0.7124 | 0.7826 | 0.4368 | | 0.0063 | 19.0 | 2641 | 0.7416 | 0.7116 | 0.7796 | 0.4314 | | 0.0043 | 20.0 | 2780 | 0.7470 | 0.7124 | 0.7795 | 0.4332 | | 0.0031 | 21.0 | 2919 | 0.7647 | 0.7012 | 0.7710 | 0.4296 | | 0.0041 | 22.0 | 3058 | 0.7516 | 0.7019 | 0.7722 | 0.4350 | | 0.0028 | 23.0 | 3197 | 0.7591 | 0.7035 | 0.7721 | 0.4386 | | 0.0027 | 24.0 | 3336 | 0.7587 | 0.7052 | 0.7748 | 0.4386 | | 0.0028 | 25.0 | 3475 | 0.7644 | 0.7099 | 0.7770 | 0.4422 | | 0.0027 | 26.0 | 3614 | 0.7656 | 0.7081 | 0.7758 | 0.4422 | | 0.0033 | 27.0 | 3753 | 0.7629 | 0.7097 | 0.7764 | 0.4477 | | 0.0026 | 28.0 | 3892 | 0.7622 | 0.7082 | 0.7758 | 0.4458 | | 0.0025 | 29.0 | 4031 | 0.7626 | 0.7082 | 0.7758 | 0.4458 | | 0.0023 | 30.0 | 4170 | 0.7627 | 0.7082 | 0.7758 | 0.4458 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.21.0