--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentiment-5Epochs results: [] --- # sentiment-5Epochs This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4947 - Accuracy: 0.8719 - F1: 0.8685 - Precision: 0.8919 - Recall: 0.8463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3566 | 1.0 | 7088 | 0.3987 | 0.8627 | 0.8505 | 0.9336 | 0.7810 | | 0.3468 | 2.0 | 14176 | 0.3861 | 0.8702 | 0.8638 | 0.9085 | 0.8232 | | 0.335 | 3.0 | 21264 | 0.4421 | 0.8759 | 0.8697 | 0.9154 | 0.8283 | | 0.3003 | 4.0 | 28352 | 0.4601 | 0.8754 | 0.8696 | 0.9119 | 0.8311 | | 0.2995 | 5.0 | 35440 | 0.4947 | 0.8719 | 0.8685 | 0.8919 | 0.8463 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0 - Datasets 2.0.0 - Tokenizers 0.11.6